МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра горно-металлургической промышленности и строительства экологии и безопасности жизнедеятельности

> УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	ал ш оп гамма дисциплины
	Радиоэкология
	(наименование дисциплины)
05.03.	06 Экология и природопользование
000000000000000000000000000000000000000	(код, наименование направления)
Прикла,	дная экология и природопользование
	(профиль подготовки)
101	
Квалификация	бакалавр (бакалавр/специалист/магистр)
	(vakanasprenegnamen marnetp)
Форма обучения	очная, заочная
·	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели дисциплины. Целью изучения дисциплины «Радиоэкология» является формирование знаний о влиянии ионизирующего излучения на экологические системы и их компоненты, миграции радионуклидов в экосистемах; овладение умениями выбирать мероприятия для защиты от негативного влияния радиоактивного загрязнения окружающей среды.

Задачи изучения дисциплины:

- ознакомить студентов с физическими основами радиационного загрязнения,
- изучить естественные и техногенные источники радиационного загрязнения,
- овладеть средствами и методами создания радиационного безопасности населения и окружающей среды.

Дисциплина направлена на формирование общепрофессиональной (ОПК-2) компетенции выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины - курс входит в элективные дисциплины (модули) Блока 1 подготовки студентов по направлению подготовки 05.03.06 «Экология и природопользование» (профиль «Прикладная экология и природопользование»).

Дисциплина реализуется кафедрой экологии и безопасности жизнедеятельности. Для изучения дисциплины необходимы компетенции, сформированные у студента в результате освоения дисциплин «Физика» и «Биология».

В свою очередь, дисциплина «Радиоэкология» является основой для изучения следующих дисциплин: «Экология», «Экологическое проектирование и экспертиза», «Охрана труда и безопасность в чрезвычайных ситуациях», а также, приобретенные знания могут быть использованы при подготовке и защите выпускной квалификационной работы, при прохождении преддипломной практики и в профессиональной деятельности.

Общая трудоемкость освоения дисциплины составляет 4 зачетные единицы, 144 часа. Программой дисциплины предусмотрены для очной формы обучения лекционные (36 ч.), практические (36 ч.) занятия и самостоятельная работа студента (72 ч.); для заочной формы обучения: лекционные (4 ч.), практические (6 ч.) занятия и самостоятельная работа студента (134 ч.)

Дисциплина изучается на 3 курсе в 6 семестре для очной формы обучения и на 5 курсе в 10 семестре для заочной формы обучения. Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Радиоэкология» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание	Код	Код и наименование индикатора
компетенции	компетенц	достижения компетенции
	ии	
Способен	ОПК-2	ОПК-2.1. Демонстрация теоретических знаний
использовать		экологии и наук об окружающей среде
теоретические основы		ОПК-2.2. Понимание, изложение и критический
экологии,		анализ информации в области экологии,
геоэкологии,		геоэкологии, природопользования, охраны
природопользования,		природы и наук об окружающей среде
охраны природы и		ОПК-2.3. Знание причин, сущности и путей
наук об окружающей		решения приоритетных проблем охраны
среде в		окружающей среды, природопользования и
профессиональной		обеспечения экологической безопасности
деятельности		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 4 зачётные единицы, 144 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам	
Аудиторная работа, в том числе:	72	72	
Лекции (Л)	36	36	
Практические занятия (ПЗ)	36	36	
Лабораторные работы (ЛР)	-	-	
Курсовая работа/курсовой проект	-	-	
Самостоятельная работа студентов (СРС), в том числе:	72	72	
Подготовка к лекциям	9	9	
Подготовка к лабораторным работам	-	-	
Подготовка к практическим занятиям / семинарам	18	18	
Выполнение курсовой работы / проекта	-	-	
Расчетно-графическая работа (РГР)	-	-	
Индивидуальное задание	15	15	
Домашнее задание	-	-	
Подготовка к контрольной работе	6	6	
Аналитический информационный поиск	8	8	
Работа в библиотеке	8	8	
Подготовка к экзамену	8	8	
Промежуточная аттестация – экзамен (Э)	Э	Э	
Общая трудоемкость дисциплины			
ак.ч.	144	144	
3.e.	4	4	

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Поступление радионуклидов в экосистему);
- тема 2 (Влияние радионуклидов на биосферу);
- тема 3 (Радиоемкость);
- тема 4 (Миграция радионуклидов);
- тема 5 (Радиоэкология городов);
- тема 6 (Контрмеры радиоэкологии).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Transferro Barrie Tembr	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1		Введение. Цель и задачи предмета. Воздушный путь. Поверхностный сток радионуклидов. Вторичный ветровой подъем. Коэффициенты накопления и перехода радионуклидов в экосистемах. Особенности поступления радионуклидов в экосистемы. Особенности поступления радионуклидов в пресноводные и морские экосистемы. Особенности поступления радионуклидов в лесные экосистемы, агроэкосистемы. лесные экосистемы, агроэкосистемы.		Оценка дозы внешнего облучения радиоактивными элементами.		-	
2	биосферу	Влияние радионуклидов на микроорганизмы, растения животных, рыб и человека. Особенности поступления в организм и влияние на человека разных радионуклидов. Облучение и продолжительность жизни человека. Влияние на здоровье населения крупных радиационных аварий. Предельно-допустимые дозы облучения.	,	Оценка дозы внешнего облучения ⁹⁰ Sr.	6	_	

№ Han	аименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
3 Рад		Радиоактивность непроточного водоема. Применение модели радиоемкости на примере водоема-охладителя. Радиоемкость каскада пресноводных водоемов. Радиоемкость морской экосистемы. Роль биоты, как депо накопления радионуклидов. Радиоемкость лесной экосистемы. Радиоемкость агроэкосистемы.		Оценка дозы внутреннего облучения от сельскохозяйственн ой продукции.	6	_	_
		Миграция радионуклидов в морской экосистеме. Анализ морских экосистем с позиции теории радиоемкости. Миграция радионуклидов в пресноводных экосистемах. Общие особенности пресноводных экосистем. Распределение радионуклидов среди компонентов пресноводных водоемов. Накопление радионуклидов гидробионтами. Проблемы радиоемкости пресноводных экосистем. Миграция радионуклидов в наземных системах. Нахождение радионуклидов на территории с растительным покровом. Миграция радионуклидов в лесных экосистемах. Миграция радионуклидов в лесных экосистемах. Миграция радионуклидов в луговых радионуклидов в луговых радионуклидов в луговых радиоемкость		Оценка дозы внутреннего облучения от животноводческой продукции.	6		

<u>№</u> п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		наземных экосистем. Миграция радионуклидов в агроценозах. Поступление радионуклидов в сельскохозяйственные растения. Радиология сельскохозяйственных животных.					
5	Радиоэкология городов	Город как экосистема. Поступление радионуклидов в городские экосистемы, их распределение и миграция. Радиоемкость городской экосистемы. Радионуклидное загрязнение природной среды вследствие Чернобыльской аварии. Загрязнение водной экосистемы загрязнение растительности и животного мира. Проблемы загрязнения радионуклидами значительных территорий.		Оценка суммарной дозы облучения	6		
6	Контрмеры радиоэкологии	Контрмеры в условиях радиационных аварий. Метод радиоэкологической оценки эффективности контрмер в условиях радиоэкологическая экспертиза атомных станций и ядерных предприятий. Принцип и цель радиологической экспертизы. Элементы экспертизы.		Анализ опасности радиоактивного облучения при проживании на загрязненной радиацией территории.	6		
Bce	го аудиторных часов		36	36		_	•

Таблицы 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкос.ь в ак.ч.
1	Поступление радионуклидов экосистему	Цель и задачи предмета. Воздушный впуть. Поверхностный сток радионуклидов. Вторичный ветровой подъем. Коэффициенты накопления и перехода радионуклидов в экосистемах. Особенности поступления радионуклидов в пресноводные и морские экосистемы. Особенности поступления радионуклидов в пресноводные и морские экосистемы. Особенности поступления радионуклидов в лесные экосистемы, агроэкосистемы		Оценка суммарной дозы облучения от 137 Cs и 90 Sr. Расчет годовой дозы радиоактивного облучения при проживании на загрязненной радиацией территории.		_	
Bce	го аудиторных час	СОВ	4	6		_	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modu l.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень работ по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень работ по дисциплине и способы оценивания знаний

Вид учебной работы	Способ оценивания	Количество баллов
Выполнение практических работ	Предоставление отчетов	24 - 40
Сдача коллоквиумов	Более 50% правильных ответов	36 - 60
Итого	_	60 - 100

Экзамен проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Радиоэкология» проводится по результатам работы в семестре. В случае если полученная в семестре сумма баллов не устраивает студента, во время экзаменационной сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п.п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	экзамен
0-59	неудовлетворительно
60-73	удовлетворительно
74-89	хорошо
90-100	онридто

6.2 Домашнее задание

В качестве домашнего задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- практические задания.

6.3. Оценочные средства (тесты) для текущего контроля успеваемости

Тема 1 Поступление радионуклидов в экосистему

- 1) Какие излучения на загрязненных радиоактивностью территориях являются ионизирующими?
- 2) Какие излучения в электромагнитном спектре не являются ионизирующими?
- 3) Количество каких частиц изменяется при ионизации атомов?
- 4) Как изменяется заряд атома при ионизирующем облучении?
- 5) Виды радиоактивного излучения при самопроизвольном распаде радионуклидов.

Тема 2 Влияние радионуклидов на биосферу

- 6) Что происходит в организме человека в результате получения большой дозы внешнего облучения?
- 7) У какого вида радиоактивного излучения наибольшая проникающая способность?
- 8) У какого радиоактивного излучения наибольшая энергия ионизации при внутреннем облучении?
- 9) Чем создается естественный радиационный фон?
- 10) Что означает условная атомная масса, указанная в таблице Менделеева?

Тема 3 Радиоемкость

- 11) Какие характеристики почвенного слоя, усиливающие или ослабляющие его радиационный фон?
- 12) Перечислите агротехнические мероприятия по дезактивации почвенного слоя.
- 13) Что означает горизонтальная и вертикальная подвижность радионуклидов?
- 14) Что такое механические радиоактивные загрязнения воды? Какие проблемы от радиоактивного загрязнения воды?

Тема 4 Миграция радионуклидов

- 15) Как происходит образование анионов и катионов в результате радиоактивного облучения?
- 16) Что такое радиоактивные изотопы и радиоактивные элементы таблицы Менделеева?
- 17) Как снизить радиоактивности почвы с помощью выращивания растений?
- 18) Какие существуют методы и средства дезактивации воды?

- 19) Какие факторы способствуют горизонтальной миграции радионуклидов?
- 20) Какие факторы способствуют вертикальной миграции радионуклидов?

Тема 5 Радиоэкология городов

- 1) Какие существуют методы, приборы и средства измерения радиоактивности?
- 2) . Какие предельно допустимые дозы облучения, утвержденные Международной комиссией по радиационной защите?
- 3) Какие суммарные дозы профессионального облучения для различных работ и зон?
- 4) Какая относительная биологическая эффективность и нормы ПДД, для различных видов излучения?
- 5) Какой порядок подготовки и согласования аварийных планов на предприятиях, использующих радиационно-ядерные технологии?
- 6) Какое содержание типового плана аварийных мероприятий на предприятиях, использующих радиационно-ядерные технологии?
- 7) Какой перечень необходимых запасов технических и медицинских средств на случай аварии, предусмотренных аварийным планом? Тема 6 Контрмеры радиоэкологии
- 1) Какие прямые и косвенные контрмеры в условиях радиационной аварии?
 - 2) Какие контрмеры в зависимости от масштабов и фаз радиационной аварии?
 - 3) Какие радионуклиды от аварий атомных электростанций, их сравнительное количество на загрязненных территориях и периоды полураспада?
 - 4) Какие особенности радиоэкологии городов?
 - 5) Какое существует разделение радиоактивно загрязненных территорий на зоны по плотности загрязнения и величины эффективной дозы?
 - 6) Как происходит дезактивация почвы методом фиторемедиации?
 - 7) Какая экспозиционная доза радиоактивного облучения рентгеновским или гамма-излучением?
 - 8) Какой биологический эквивалент рентгена(БЭР).?
 - 9) Какой показатель имеет единицу измерения «Грей»?
 - 10) Какой показатель имеет единицу измерения «Зиверт»?
 - 11) Какой показатель имеет единицу измерения «Рентген»?
 - 12) Какой показатель имеет единицу измерения «Беккерель»?
 - 13) Что означает внешнее и внутреннее облучение?
 - 14) Какой показатель имеет единицу измерения «Кюри»?

6.4. Задания практических работ

Практическая работа № 1

Задание 1

Дано: уровень загрязнения почвы 137 Cs a_s ,= 1,8Kи/ κ м 2 .

Требуется оценить опасность внешнего облучения человека при проживании на загрязненной радионуклидами территории в следующей последовательности:

- а) определить время пребывания на загрязненной территории;
- b) определить уровень применяемых защитных средств;
- с) рассчитать дозу внешнего облучения;
- d) сделать оценку опасности радиоактивного облучения.

Задание 2

Дано: уровень загрязнения почвы 90 Sr a_s ,= 0,85 Ku/км².

Требуется оценить опасность внутреннего облучения человека при проживании на загрязненной радионуклидами территории и сделать оценку наиболее опасных сельскохозяйственных продуктов по радиоактивности:

- а) Определить время пребывания на загрязненной территории
- b) Определить уровень применяемых защитных средств
- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку опасности радиоактивного облучения.

Практическая работа № 2

Задание 1

1. Рассчитать плотность твердой фазы Задание 1.

Дано: уровень загрязнения почвы 137 Cs a_s , $= 1,6 \ \text{Ки/км}^2$.

Требуется оценить опасность суммарного облучения человека при проживании на загрязненной радионуклидами территории и потреблении продукции животноводства в следующей последовательности:

- а) Определить время пребывания на загрязненной территории.
- b) Определить уровень применяемых защитных средств.
- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку наиболее опасных продуктов животноводства по радиоактивности.
- е) Сделать оценку опасности радиоактивного облучения.

Задание 2

Дано: уровень загрязнения почвы 90 Sr a_s ,= 1,1 Ku/км 2 .

Требуется оценить опасность суммарного облучения человека при проживании на загрязненной радионуклидами территории и потреблении продукции животноводства и сельского хозяйства в следующей последовательности:

- а) Определить время пребывания на загрязненной территории.
- b) Определить уровень применяемых защитных средств.

- с) Рассчитать дозу внешнего облучения.
- d) Сделать оценку наиболее опасных продуктов животноводства по радиоактивности.
- е) Сделать оценку опасности радиоактивного облучения.

6.4 Вопросы для подготовки к экзамену (тестовому коллоквиуму)

- 1) Какие излучения на загрязненных радиоактивностью территориях являются ионизирующими?
- 2) Какие излучения в электромагнитном спектре не являются ионизирующими?
- 3) Количество каких частиц изменяется при ионизации атомов?
- 4) Как изменяется заряд атома при ионизирующем облучении?
- 5) Какие виды радиоактивного излучения при самопроизвольном распаде радионуклидов.
- 6) Что происходит в организме человека в результате получения большой дозы внешнего облучения?
- 7) У какого вида радиоактивного излучения наибольшая проникающая способность?
- 8) У какого радиоактивного излучения наибольшая энергия ионизации при внутреннем облучении?
- 9) Чем создается естественный радиационный фон?
- 10) Что означает условная атомная масса, указанная в таблице Менделеева?
- 11) Какие характеристики почвенного слоя усиливаюют или ослабляют его радиационный фон?
- 12) Какие агротехнические мероприятия по дезактивации почвенного слоя?
- 13) Что означает горизонтальная и вертикальная подвижность радионуклидов?
- 14) Что означает механические радиоактивные загрязнения воды? Какие проблемы от радиоактивного загрязнения воды?
- 15) Как образуются анионы и катионы в результате радиоактивного облучения?
- 16) Какие радиоактивные изотопы и радиоактивные элементы таблицы Менделеева?
- 17) Как снизить радиоактивность почвы с помощью выращивания растений?
- 18) Какие существуют методы и средства дезактивации воды?
- 19) Какие факторы способствуют горизонтальной миграции радионуклидов?
- 20) Какие факторы способствуют вертикальной миграции радионуклидов?

- 21) Какие методы, приборы и средства измерения радиоактивности?
- 22) Какие предельно допустимые дозы облучения, утвержденные Международной комиссией по радиационной защите?
- 23) Какие суммарные дозы профессионального облучения для различных работ и зон?
- 24) Какая относительная биологическая эффективность и нормы ПДД, для различных видов излучения?
- 25) Какой порядок подготовки и согласования аварийных планов на предприятиях, использующих радиационно-ядерные технологии?
- 26) Какое содержание типового плана аварийных мероприятий на предприятиях, использующих радиационно-ядерные технологии?
- 27) Какой перечень необходимых запасов технических и медицинских средств на случай аварии, предусмотренных аварийным планом?
- 28) Какие прямые и косвенные контрмеры в условиях радиационной аварии?
- 29) Какие контрмеры в зависимости от масштабов и фаз радиационной аварии?
- 30) Какие Радионуклиды от аварий атомных электростанций, их сравнительное количество на загрязненных территориях и периоды полураспада?
- 31) Какие особенности радиоэкологии городов?
- 32) Какое существует разделение радиоактивно загрязненных территорий на зоны по плотности загрязнения и величины эффективной дозы?
- 33) Как происходит дезактивация почвы методом фиторемедиации?
- 34) Какая экспозиционная доза радиоактивного облучения рентгеновским или гамма-излучением?

6.5 Тематика и содержание курсового проекта.

Не предусмотрен.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Белозерский, Г. Н. Радиационная экология: учебник для вузов [Текст] / Г. Н. Белозерский. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 418 с. (Высшее образование). ISBN 978-5-534-10644-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/540979. (дата обращения: 28.06.2024).
- 2. Радиобиология : учебник [Текст] / Н. П. Лысенко, В. В. Пак, Л. В. Рогожина, З. Г. Кусурова ; под редакцией Н. П. Лысенко, В. В. Пака. 5-е изд., стер. Санкт-Петербург : Лань, 2019. 572 с. ISBN 978-5-8114-4523-3. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/121988. Режим доступа: для авториз. пользователей. (дата обращения: 28.06.2024).

Дополнительная литература

- 1. Сапожников, Ю.А. Радиоактивность окружающей среды. Теория и практика [Текст] / Ю. А. Сапожников, Р. А. Алиев, С. Н. Калмыков. М. : БИНОМ, 2015. 286 с.- URL: library.tsilikin.ru Режим доступа: для авториз. пользователей. Текст : электронный. (дата обращения: 28.06.2024).
- 2. Воробьёва, В.В. Введение в радиоэкологию [Текст] : учеб. пособие для вузов / В. В. Воробьёва. М. : Логос, 2019. 360 с. URL: rosmedlib.ru Режим доступа: для авториз. пользователей. Текст : электронный. (дата обращения: 28.06.2024).

Нормативные ссылки

- 1. Российская Федерация. Законы. О промышленной безопасности опасных производственных объектов : Федеральный закон от 21.07.1997 № 116-ФЗ : принят Государственной Думой 20 июня 1997 года. Текст : электронный // Гарант : информационно-правовое обеспечение / Компания «Гарант». URL: https://base.garant.ru/11900785/.
- 2. СанПиН 2.1.3684-21. Санитарно-эпидемиологические требования к содержанию территорий городских и сельских поселений, к водным питьевому объектам, питьевой воде И водоснабжению населения, атмосферному почвам, жилым помещениям, эксплуатации воздуху, производственных, общественных помещений, организации и проведению санитарно-противоэпидемических (профилактических) мероприятий издание официальное: утвержден Главным государственным санитарным врачом Российской Федерации 28.01.2021 : введены : 01.03.2021. — М. : Стандартинформ, 2021. — 75 с. — Текст : электронный // Гарант :

- информационно-правовое обеспечение / Компания «Гарант». URL: https://base.garant.ru/400289764/.
- 3 СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания: утвержден Главным государственным санитарным врачом Российской Федерации 30.12.2022: введены: 01.03.2021. М.: Стандартинформ, 2021. 469 с. URL: https://www.garant.ru/products/ipo/prime/doc/406408041/.
- 4. О федеральном государственном надзоре в области промышленной безопасности : Постановление Правительства РФ от 30.10.2021 № 1082. Текст : электронный // ГАРАНТ.РУ : иформационно-правовой портал. URL: https://www.garant.ru/products/ipo/prime/doc/401323288/.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ : официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст : электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст : электронный.
- 3. Консультант студента : электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст : электронный.
- 4. Университетская библиотека онлайн : электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст : электронный.
- 5. IPR BOOKS : электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст : электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Mockba. https://www.gosnadzor.ru/. Текст : электронный.
- 7. Онлайн база данных Министерства природных ресурсов и экологии Российской Федерации: http://ecopages.ru/links.html&rub1id=7&page=5. Текст : электронный.
- 8. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/. Текст : электронный.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположение) учебных
	кабинетов
Специальные помещения:	
Помещения для проведения всех видов работ, предусмотренных	ауд. 6.215
учебным планом, укомплектованы необходимой	
специализированной учебной мебелью и техническими	
средствами обучения. Аудитории, оснащенные мультимедиа	
проекторами и экранами. Материально-техническое	
обеспечение учебного процесса: микроскоп портативный,	
микроскоп 2П-1, микроскоп ДП-380-800, микроскоп «юннатов»	
2П-1, рН-метр рН-150 МИ, весы технические, прибор для	
определения влажности почвы, гигрометр волосяной,	
психрометр парных термометров, термограф для регистрации	
температуры в течение суток, набор химической посуды.	

Лист согласования РПД

Разработал		
доц. кафедры экологии	~ 10	
и безопасности жизнедеятельности	Estrolling]	В.И. Павлов
(должность)	(подпись)	(Ф.И.О.)
		(4.11.0.)
(должность)	(подпись)	(Ф.И.О.)
		/
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой зкологии	1/	
и безопасности жизнедеятельности	1	В.С. Федорова
in describerin knishegoziensheem	(подпись)	(Ф.И.О.)
	De /	
Протокол № 14 заседания кафедры		
экологии и безопасности		
жизнедеятельности	от02.07	20 <u>24</u> г.
	1	•
И.о. декана	<i>y</i>	
факультета горно-металлургической	2.12/	
промышленности и строительства	OURA	О.В. Князьков
	(подпись)	(Ф.И.О.)
No. 12		
Согласовано		
Председатель методической		0
комиссии по направлению подготовки		
05.04.06 Экология и природопользование	///	
1 1	1/ 16	В.С. Федорова
	(подрись)	(Ф.И.О.)
5	gue C	
/	O .	
Начальник учебно-методического центра	1 Juli	О.А. Коваленко
	(подпись)	(Ф.И.О.)

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения				
нений				
ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:				
вание:				
вание.				
Подпись лица, ответственного за внесение изменений				