Документ подписан простой электронной подписью

Информация о владельце:

Должность: Ректор

L'anamaharan

ФИО: Вишневоний Димотрий-Алекфирорича УКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

(МИНОБРНАУКИ РОССИИ)

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ: ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ 03474917c4d012283e5ad996a48a5e70bf8da057льное учреждение высшего образования

«ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Информационных технологий и автоматизации производственных процессов Кафедра Автоматизированного управления и инновационных технологий

> УТВЕРЖДАЮ И.о. проректора получебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Цифровые двойники в системах автоматизации

(наименование дисциплины)

15.04.04 Автоматизация технологических процессов и производств

(код, наименование направления)

«Автоматизированное управление технологическими процессами и производствами»

(магистерская программа)

квалификация	магистр	
	(бакалавр/специалист/магистр)	
Форма обучения	очная, заочная	
	(очная, очно-заочная, заочная)	

1 Цели и задачи изучения дисциплины

Цель дисциплины. Целью дисциплины является формирование у студентов глубокого понимания и практических навыков работы с технологией цифрового двойника, что позволит им активно применять ее в своей будущей профессиональной деятельности в области автоматизации процессов.

Задачи изучения дисциплины:

- изучение основных понятий и теоретических основ технологии цифрового двойника.
- проектирование архитектуры цифрового двойника на основе заданных требований и функциональности.
- создание и интеграция компонентов цифрового двойника, таких как моделирование объекта, сбор данных, обработка информации и взаимодействие с реальным объектом.
- тестирование и отладка цифрового двойника для проверки его оценка преимуществ и возможных рисков применения цифрового двойника в конкретных областях.
- анализ и оценка результатов использования цифрового двойника в реальных условиях и определение функциональности и соответствия заданным требованиям.
- потенциальных областей для его дальнейшего развития и совершенствования.

Дисциплина направлена на формирование профессиональных компетенции (ПК-5) выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины — Элективные дисциплины (модули) по направлению 15.04.04 Автоматизация технологических процессов и производств (профиль: «Автоматизированное управление технологическими процессами и производствами»).

Дисциплина реализуется кафедрой Автоматизированного управления и инновационных технологий. Основывается на базе дисциплин: «Математическое моделирование», «Алгоритмизация технологических процессов», «Проектирование систем автоматизации и управления».

Является основой по дисциплинам «Хаотическая динамика нелинейных систем» и при формировании разделов НИРс и магистерской работы.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с актуализацией управленческих решения.

Курс является фундаментом для ориентации студентов в сфере создания цифровых двойников и использования их в системах автоматизации.

Общая трудоемкость освоения дисциплины составляет 5 зачетные единицы, 108 ак.ч.

Программой дисциплины предусмотрены:

- при очной форме обучения лекционные (18 ак.ч.), практические (18 ак.ч.), лабораторные (18 ак.ч.) (занятия и самостоятельная работа студента (54 ак.ч.);
- при заочной форме обучения лекционные (4 ак.ч.), практические (2ак.ч.), лабораторные (2 ак.ч.) занятия и самостоятельная работа студента (100 ак.ч.);

Дисциплина изучается:

- при очной форме обучения на 2 курсе в 3семестре;
- при заочной форме обучения на 2 курсе в 3 семестре.

Форма промежуточной аттестации – экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Цифровые двойники в системах автоматизации» направлен на формирование компетенции, представленной в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код	Код и наименование индикатора	
	компетенции	достижения компетенции	
Способен	ПК-5	ПК-5.1. Разбирается в алгоритмах	
владеть теоретическими		работы механизмов	
основами, методами и		нечетко-логических выводов, анализа и	
алгоритмами		расчета способов построения функций	
интеллектуализации решения		принадлежностей, способов адаптации и	
прикладных задач при		обучения с помощью нейронных сетей	
построении		механизмов нечетко-логического	
автоматизированных систем		вывода.	
управления широкого		ПК-5.2. Умеет адаптировать и обучать с	
назначени		помощью нейронных сетей	
		ПК-5.4 Владеет навыками управления	
		результатами научно-исследовательской	
		деятельности и коммерциализацией прав	
		на инновационные объекты	
		автоматизации.	

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3 зачётных единицы, 108 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, выполнение индивидуального задания, самостоятельное изучение материала и подготовку к экзамену.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам 3
Аудиторная работа, в том числе:	54	54
Лекции (Л)	18	18
Практические занятия (ПЗ)	18	18
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	54	54
Подготовка к лекциям	4	4
Подготовка к лабораторным работам	8	8
Подготовка к практическим занятиям / семинарам	8	8
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	8	8
Домашнее задание	-	-
Подготовка к контрольной работе	6	6
Подготовка к коллоквиуму		
Аналитический информационный поиск	-	-
Работа в библиотеке	-	-
Подготовка к экзамену	20	20
Промежуточная аттестация – экзамен (э)	Э	Э
Общая трудоемкость дисциплины		
ак.ч.	108	108
3.e.	3	3

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 5 тем:

- Тема 1 (Концепция цифровых двойников систем и процессов);Тема 2 (Интеграция цифровых двойников в промышленные системы);
- Тема 3 (Управление цифровыми двойниками и оптимизация систем);
- Тема 4 (Использование методов машинного обучения в вычислительном моделировании и цифровых двойниках);
- Тема 5 (Применение цифровых двойников в различных отраслях).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

11

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование	Содержание лекционных занятий	Трудоемко	Темы	Трудоемк	Тема	Трудоемкос
	темы (раздела)		сть в ак.ч.	практических	ость в	лабораторных	ть в ак.ч.
	дисциплины			занятий	ак.ч.	занятий	
	Концепция	Введение в цифровые двойники: основные	4	Модели	4	Изучение	4
1	цифровых	понятия, преимущества и области		производствен		реализации	
	двойников	применения. Создание цифровых		ных систем		средствами	
	систем и	двойников физических систем: методы				системы	
	процессов	моделирования и инструменты.				MATLAB	
		Применение цифровых двойников в				основных	
		промышленных системах. Моделирование				операций с	
		производственных процессов с				векторами и	
		использованием цифровых двойников.				матрицам	
		Интеллектуальные системы управления на					
		основе цифровых двойников. Цифровые					
		двойники в энергетике и логистике.					
		Использование цифровых двойников в					
		городском планировании и транспорте.					
		Цифровые двойники в здравоохранении и					
		образовании.					
	Интеграция	Интеграция цифровых двойников:		2 Аппаратная	4	Ознакомиться с	4
2	цифровых	основные подходы и технологии.	4	и программная		операциями	
	двойников в	Цифровые двойники и Internet of Things		часть		отношения,	
	промышленны	(ІоТ): интеграция данных и управление		цифрового		логическими	
	е системы	устройствами. Применение цифровых		двойника		операциями и	
		двойников для оптимизации				условными	
		производственных процессов.				операторами,	
		Использование цифровых двойников для				приобрести	
		управления активами и обслуживания				навыки их	
		оборудования. Интеграция цифровых				использования	
		двойников в системы энергоснабжения и				при	
		логистики.				разветвленных	
						вычислениях.	

3	Управление цифровыми двойниками и оптимизация систем.	Управление цифровыми двойниками: основные подходы и методы. Оптимизация производственных процессов на основе цифровых двойников. Применение цифровых двойников для прогнозирования и предотвращения сбоев в работе систем.	4	Обмен данными с моделью с помощью SCADA системы	4	Решение дифференциаль ных уравнений с использование м встроенных функций	4
4	. Использовани е методов машинного обучения в вычислительн ом моделировани и и цифровых двойниках	Методы машинного обучения для предсказания результатов вычислительных моделей. Обучение и тестирование моделей машинного обучения. Применение машинного обучения для оптимизации цифровых двойников. Оценка точности и надежности моделей машинного обучения для цифровых двойников. Управление данными и качеством данных для машинного обучения в цифровых двойниках. Вовлечение пользователей и принятие решений на основе моделей машинного обучения в контексте цифровых двойников	4	Модель ЦД финансовой устойчивости предприятия	4	Идентификаци я параметров модели ФУ	4

5	. Применение	Применение вычислительного	2	Оформление	2	Оформление	2
	цифровых	моделирования в различных отраслях:		отчета по		графического	
	двойников в	примеры и кейсы. Использование		практическим		материала	
	различных	цифровых двойников для управления		работам		отчета по ЛР	
	отраслях.	рисками и принятия решений в бизнесе.					
		Цифровые двойники в здравоохранении:					
		возможности и перспективы.					
		Вычислительное моделирование и					
		цифровые двойники в					
		образовании и науке.					
Всего							
аудито			18		18		18
рных			10		10		10
занятий							

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Концепция цифровых двойников систем и процессов	Введение в цифровые двойники: основные понятия, преимущества и области применения. Создание цифровых двойников физических систем: методы моделирования и инструменты. Применение цифровых двойников в промышленных системах. Моделирование производственных процессов с использованием цифровых двойников. Интеллектуальные системы управления на основе цифровых двойников. Цифровые двойники в энергетике и логистике. Использование цифровых двойников в городском планировании и транспорте. Цифровые двойники в здравоохранении и образовании.	4	Модели производственны х систем	2	Изучение реализации средствами системы МАТLАВ основных операций с векторами и матрицам	2
	Всего аудиторных	часов	4	2		2	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/images/structure/license_certificate/polog_kred_modul.pdf) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-5	экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- тестовый контроль (2) или контрольная работа (2) всего 30 баллов;
- за выполнение реферата (2) всего 10 баллов;
- Лабораторные и практические работы всего 60 баллов.

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального.

Экзамен по дисциплине «Цифровые двойники в системах автоматизации» проводится по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время экзамена студент имеет право повысить итоговую оценку в форме устного экзамена по приведенным ниже вопросам (п.п. 6.4).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Темы для рефератов (контрольных работ) – индивидуальное задание

- 1) Инжиниринговые инструменты для создания ЦД и их эволюция.
- 2) ЦД и оптимизация изделия, аддитивные технологии.
- 3) Технологии сбора и обработки данных для создания ЦД.
- 4) Технологии математического моделирования и цифровых теней.
- 5) ЦД, облака и периферийные вычисления.
- 6) ЦД и новые человеко-машинные интерфейсы.
- 7) ЦД и Блокчейн.
- 8) Схема ЦД и роль составляющих технологий.
- 9) ЦД как способ преодоления сложности инженерных систем.
- 10) ЦД и концепция МВЅЕ.
- 11) ЦД как интеграция этапов жизненного цикла изделия.
- 12) Объединение ЦД в комплексных объектах и их взаимодействие.
- 13) Типы ЦД и их классификация.
- 14) Классификация ЦД по уровню сложности.
- 15) Классификация ЦД по уровню зрелости.
- 16) Другие виды классификации и обобщенная схема.
- 17) Трактовка термина «ЦД» в разных отраслях экономики.
- 18) Границы восприятия термина «ЦД» в профессиональном сообществе.

6.3 Оценочные средства (тесты) для текущего контроля успеваемости и коллоквиумов

Тема 1 Концепция цифровых двойников систем и процессов

- 1) Дайте определение понятию «цифровой двойник».
- 2) Приведите классификацию цифровых двойников.
- 3) Приведите основные преимущества применения цифровых двойников.
- 4) Сформулируйте данные и параметры, представленные в цифровом двойнике.
- 5) Перечислите этапы проектирования цифрового двойника.
- 6) Охарактеризуйте методы проектировании цифрового двойника.

7) Приведите инструменты проектировании цифрового двойника.

Тема 2. Интеграция цифровых двойников в промышленные системы.

- 1) Укажите этапы создание и реализация цифрового двойника.
- 2) Что такое алгоритмы разработки цифровых двойников.
- 3) Что такое интеграция цифрового двойника с реальной системой или объектом.
- 4) Укажите области применения цифровых двойников.
- 5) Приведите преимущества цифровых двойников.
- 6) Каким образом цифровые двойники интегрируются с системами искусственного интеллекта.
- 7) Укажите проблемы создания и использования цифровых двойников.

Тема 3. Управление цифровыми двойниками и оптимизация систем.

- 1) Приведите требования к аппаратной платформе для работы цифрового двойника
- 2) Как происходит передача данных между реальной системой и цифровым двойником.
- 3) Каким образом достигается безопасность и защита данных в цифровом двойнике.
- 4) Укажите методы и алгоритмы для анализа данных в цифровом двойнике.
- 5) Объясните понятия цифровой двойник, симуляции и моделирование процессов.
- 6) Как осуществляется масштабируемость цифрового двойника.
- 7) Укажите виды и форматы данных, используемые в цифровом двойнике.
- 8) Какие показатели и метрики могут использоваться для оценки эффективности цифрового двойника.
- 9) Как происходит поддержка и обновление цифрового двойника в процессе его эксплуатации.
- 10) Объясните роль цифрового двойника в процессе принятия решений и оптимизации процессов.
- 11) Приведите требования к интерфейсу взаимодействия с цифровым двойником.
- 12) Перечислите требования и стандарты разработки и использовании цифровых двойников.
- 13) Сформулируйте перспективы и направления развития технологии цифрового двойника.

Тема 4. Использование методов машинного обучения

В

вычислительном моделировании и цифровых двойниках.

- 1) Определение понятия "виртуальная реальность" (VR).
- 2) Укажите недостатки аналитических подходов/машинного обучения Основные понятия виртуальной реальности.
- 3) Укажите последовательность этапов эволюции цифровой модели на разных этапах жизненного цикла изделия Аппаратные средства виртуальной реальности.
- 4) Подключение модели к реальному объекту и добавление моделирования, базирующегося на получаемых от объекта данных.
- 5) Укажите достоинства математического моделирования физических процессов.
- 6) Какие факторы влияют на точность вычислительного моделирования и как их минимизировать.
- 7) Приведите примеры датчиков и исполнительных механизмов, наиболее часто используемых в математических моделях мехатронных систем.

Тема 5. Применение цифровых двойников в различных отраслях.

- 1) За счет чего происходит оптимизация производственных процессов с использованием цифровых двойников.
- 2) Рассмотрите управление цифровыми двойниками: основные подходы и методы.
- 3) Покажите применение цифровых двойников для прогнозирования и предотвращения сбоев в работе систем.
- 4) Как методы машинного обучения используются для предсказания результатов вычислительных моделей.
- 5) Каким образом происходит обучение и тестирование цифровых двойников.
- 6) Объясните применение машинного обучения для оптимизации цифровых двойников.
- 7) Покажите, как управление качеством данных для машинного обучения в цифровых двойниках.
- 8) Перечислите применение вычислительного моделирования в различных отраслях.
- 9) Как концепция цифровых двойников, используется для управления рисками и принятия решений.
- 10) Укажите стандарты и спецификации для разработки цифровых двойников и систем имитационного моделирования.
- 11) Перечислите требования к безопасности и защите данных в контексте вычислительного моделирования и цифровых двойников.

6.4 Вопросы для подготовки к экзамену

- 1) Основные понятия математического моделирования.
- 2) Перечислите компоненты, которые необходимо учитывать при разработке математической моделимехатронной системы?
- 3) Объясните процесс выбора подходящих математических уравнений для описания поведения мехатронных систем?
- 4) Область применения и методы построения математических моделей.
- 5) Способы использования дифференциальных уравнений для описания динамики мехатронных систем вматематических моделях?
- 6) Универсальность математических моделей.
- 7) Опишите процесс вычислительного моделирования от начала до конца при построении цифрового двойника.
- 8) Какие факторы влияют на точность вычислительного моделирования и как их минимизировать?
- 9) Приведите примеры датчиков и исполнительных механизмов, наиболее часто используемых вматематических моделях мехатронных систем.
- 10) Опишите проблемы или ограничения при разработке точных математических моделей сложных мехатронных систем
- 11) Приведите примеры программных инструментов и языков программирования, обычно используемых для вычислительного моделирования цифровых двойников и систем.
- 12) Роль математического моделирования в проектировании и оптимизации мехатронных систем.
- 13) Концепция цифрового двойника и связь с системами и процессами моделирования.
- 14) Типы и виды анализа данных.
- 15) Определение и основные понятия цифровых двойников.
- 16) Преимущества и недостатки, области применения цифровых двойников.
- 17) Интеграция цифровых двойников: основные подходы и технологии.
- 18) Цифровые двойники и Internet of Things (IoT)
- 19) Оптимизация производственных процессов с использованием цифровых двойников.
- 20) Управление цифровыми двойниками: основные подходы и методы.
- 21) Применение цифровых двойников для прогнозирования и предотвращения сбоев в работе систем.
- 22) Методы машинного обучения для предсказания результатов вычислительных моделей.

- 23) Обучение и тестирование цифровых двойников.
- 24) Применение машинного обучения для оптимизации цифровых двойников.
- 25) Управления качеством данных для машинного обучения в цифровых двойниках.
- 26) Применение вычислительного моделирования в различных отраслях.
- 27) Использование цифровых двойников для управления рисками и принятия решений.
- 28) Стандарты и спецификации для разработки цифровых двойников и систем имитационного моделирования.
- 29) Требования к безопасности и защите данных в контексте вычислительного моделирования и цифровых двойников.
- 30) Каковы потенциальные области развития вычислительного моделирования и будущие тенденции приразработке цифровых двойников.

6.5 Примерная тематика курсовых работ

Курсовые работы не предусмотрены.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Информационные системы и цифровые технологии: учебное пособие. Часть 2 / под общ. ред. проф. В.В. Трофимова и В.И. Кияева. Москва: ИНФРА-М, 2021. 270 с. (Высшее образование: Бакалавриат). ISBN 978-5-16-109771-7. Текст: электронный. URL: https://znanium.com/catalog/product/1786660 Режим доступа: по подписке.
- 2. Звонарев, С. В. Основы математического моделирования: учебное пособие / С. В. Звонарев. Екатеринбург: Изд-во Уральского ун-та, 2019. 112 с. ISBN 978-5-7996-2576-4. Текст: электронный. URL: https://znanium.com/catalog/product/1957538— Режим доступа: по подписке.
- 3. Иванов, В. К. Моделирование мехатронных систем: учебное пособие / В. К. Иванов, В. Е. Макаров, К. Н. Никоноров; под общ. ред. В. К. Иванова. Йошкар-Ола: Поволжский государственный технологический университет, 2021. 122 с. ISBN 978-5-8158-2227-6. Текст: электронный. URL: https://znanium.com/catalog/product/1894107. Режим доступа: по подписке.

Дополнительная литература

- 1. Компьютерное моделирование: учебник / В.М. Градов, Г.В. Овечкин, П.В. Овечкин, И.В. Рудаков. Москва: КУРС: ИНФРА-М, 2023. 264 с. ISBN 978-5-906818-79-9. Текст: электронный. URL: https://znanium.com/catalog/product/1896364. Режим доступа: по подписке.
- 2. ; Таганрог : Издательство Южного федерального университета, 2020. 159 с. ISBN 978-5-9275-3625-2. Текст: электронный. URL: https://znanium.com/catalog/product/1308357. Режим доступа: по подписке.
- 3. Астраханцева, И. А. Моделирование систем: учебное пособие / И. А. Астраханцева, С. П. Бобков. Москва: ИНФРА-М, 2023. 216 с. (Высшее образование: Бакалавриат). DOI 10.12737/1831624. ISBN 978-5-16-017220-0. Текст: электронный. URL: https://znanium.com/catalog/product/1831624. Режим доступа: по подписке.

Учебно-методическое обеспечение

1. Методические указания к лабораторным и самостоятельным занятиям по дисциплине «Моделирование систем и процессов» для студентов, обучающихся по специальности 15.04.03 «Автоматизация технологических процессов и производств», профиль — «Управление и инновации в автоматизированных системах и технологических процессах» / Сост.:

Шиков Н.Н., Бойко Н.З., Ткачев Р.Ю. – Алчевск: Изд-во Ладо, 2022. – 119 с. library.dstu.education. — Текст: электронный.

1.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт. Алчевск. URL: <u>library.dstu.education.</u> Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система. URL: http://biblioclub.ru/index.php?page=main_ub_red. Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система. Красногорск. URL: http://www.iprbookshop.ru/. Текст: электронный.
- 6. Федеральная служба по экологическому, технологическому и атомному надзору (Ростехнадзор) : официальный сайт. Москва. https://www.gosnadzor.ru/. Текст: электронный.

.

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес
Наименование оборудованных учебных кабинетов	(местоположение)
Паименование оборудованных учесных касинетов	учебных
	кабинетов
Специальные помещения:	
Лекционная аудитория. (50 посадочных мест)	ауд. <u>220</u> корп. <u>1</u>
Аудитории для проведения практических и лабораторных	
занятий, для самостоятельной работы:	ауд. <u>207.206</u> корп. <u>1</u>
компьютерный класс (учебная аудитория) для проведения	
лабораторных, практических занятий, групповых и	
индивидуальных консультаций, организации самостоятельной	
работы, в том числе, научно-исследовательской, оборудованная	
учебной мебелью, компьютерами с неограниченным доступом к	
сети Интернет, включая доступ к ЭБС	
Персональные компьютеры Sepron 3200, Int Celeron 420, принтер	
LBP2900, локальная сеть с выходом в Internet	

Лист согласования РПД

Разработал	1	
доц. кафедры автоматизированного управлежнологий (должность)	пения и пиноваци	онных <u>Н.Н. Шиков</u> (Ф.И.О
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой автоматизирог управления и инновационных технологий	2 /	Е.В. Мова (Ф.И.О.)
Протокол №_1 заседания кафедры автоматизированного управления и инновационных технологий	V	
	от 09	9.07.20 <u>24</u> г.

Согласовано

Председатель методической комиссии по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств

<u>E.B. Мова (Ф.И.О.</u>

Начальник учебно-методического центра

и О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основание:				
Подпись лица, ответственного за внесение изменений				