Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

> ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет Кафедра

горно-металлургической промышленности и строительства металлургических технологий

> **ТВЕРЖДАЮ** проректора по учебной И.о. работе

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теоретические основы химической технологии природных энергоносителей и углеродных материалов

(наименование дисциплины)

18.03.01 Химическая технология

(код, наименование направления)

Химическая технология природных энергоносителей и углеродных материалов

(профиль подготовки)

Квалификация бакалавр (бакалавр/специалист/магистр) Форма обучения очная, заочная (очная, заочная)

1 Цели и задачи дисциплины

Цели дисциплины: формирование системы знаний теоретических основ процессов, протекающих в переработке топлива. Изучение механизмов реакций термических и каталитических процессов, свойств природных энергоносителей и продуктов их переработки.

Задачи дисциплины: изучение происхождения и свойств природных энергоносителей, продуктов их переработки; понимание теории процессов, лежащих в основе промышленной переработки природных энергоносителей; выполнение расчетов технологических процессов переработки природных энергоносителей.

Дисциплина направлена на формирование: профессиональных компетенций (ПК-3) выпускника.

2 Место дисциплины в структуре образовательной программы

Логико-структурный анализ дисциплины: курс входит в обязательную часть Блока 1 «Дисциплины (модули)» подготовки студентов по направлению 18.03.01 «Химическая технология», профиль «Химическая технология природных энергоносителей и углеродных материалов».

Дисциплина реализуется кафедрой металлургических технологий. Входные знания базируются на изученных дисциплинах: «Общая и неорганическая химия», «Органическая химия», «Общая химическая технология», «Природные энергоносители».

Является основой для изучения следующих дисциплин: «Химическая технология природных энергоносителей и углеродных материалов», «Высокотемпературные процессы химической технологии».

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 5 зачетных единиц, 180 ак.ч. Программой дисциплины предусмотрены лекционные (54 ак.ч.), практические (36 ак.ч.) занятия и самостоятельная работа студента (90 ак.ч.).

Общая трудоемкость освоения дисциплины для заочной формы обучения составляет 5 зачетных единиц, 180 ак.ч. Программой дисциплины предусмотрены лекционные (8 ак.ч.), практические (8 ак.ч.) занятия и самостоятельная работа студента (164 ак.ч.).

Дисциплина изучается на 3 курсе в 6 семестре для очной формы обучения, на 4 курсе в 8 семестре для заочной формы обучения. Форма промежуточной аттестации — экзамен.

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теоретические основы химической технологии природных энергоносителей и углеродных материалов» направлен на формирование компетенций, представленных в таблице 1.

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Способность прини-		ПК-3.1. Знает: основные технологические схемы про-
мать конкретные		цесса
технические решения		ПК-3.2. Умеет: проводить работы по совершенство-
для совершенствова-		ванию действующих и освоению новых технологиче-
ния технологических	ПК-3	ских процессов
процессов с учетом		ПК-3.3. Владеет: навыками научно-технического за
экологических по-		анализа производства и продукции.
следствий их приме-		
нения		

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 5 зачётных единиц, 180 ак.ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Всего ак.ч.	Ак.ч. по семестрам
A	180	6
Аудиторная работа, в том числе:	90	90
Лекции (Л)	54	54
Практические занятия (ПЗ)	36	36
Лабораторные работы (ЛР)	_	_
Курсовая работа/курсовой проект	_	_
Самостоятельная работа студентов (СРС), в том числе:	90	90
Подготовка к лекциям	10	10
Подготовка к лабораторным работам	_	_
Подготовка к практическим занятиям / се-	36	36
минарам		
Расчетно-графическая работа (РГР)	_	_
Реферат (индивидуальное задание)	12	12
Домашнее задание	_	_
Подготовка к контрольной работе	_	_
Подготовка к коллоквиуму	_	_
Аналитический информационный поиск	10	10
Работа в библиотеке	10	10
Подготовка к экзамену	12	12
Промежуточная аттестация – экзамен		
Общая трудоемкость дисциплины		
ак.ч.	180	180
3.e.	5	5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 6 тем:

- тема 1 (Химия природных энергоносителей);
- тема 2 (Физико-химические основы разделения природных энергоносителей);
- тема 3 (Стехиометрия и материальные балансы процессов переработки природных энергоносителей);
 - тема 4 (Топливно-дисперсные системы);
 - тема 5 (Термодеструктивные и термоокислительные процессы);
- тема 6 (Каталитические превращения и гидрогенизационные процессы).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудоем- кость в ак.ч.	Темы лабораторных занятий	Трудоем- кость в ак.ч.
1	Химия природ- ных энергоно- сителей.	Химия природных энергоносителей — сырья для химической переработки.	8	D		_	_
2	Физико- химические основы разделения природных энергоносителей.	Научные и теоретические основы физико-химических процессов переработки природных энергоносителей и продуктов их переработки.	8	Расчет равновесия в различных техно-логических процессах.	10	_	_
3	Стехиометрия и материальные балансы процессов переработки природных энергоносителей.	Понятие о стехиометрии и материальном балансе процессов переработки природных энергоносителей.	10	Расчет моделей химических реакторов.	10	_	_
4	Топливно- дисперсные системы	Понятие о топливно-дисперсных системах и элементах структуры дисперсной фазы — дисперсной частице и сложной структурной единице. Свойства дисперсных систем.	8				

~

Прод	Продолжение таблицы 3						
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудо- емкость в ак.ч.		Трудо- емкость в ак.ч.	Темы лабораторных занятий	Трудо- емкость в ак.ч.
5	Термодеструктивные и термоокислительные процессы	Термодеструктивные превращения природных энергоносителей и продуктов их переработки. Термоокислительные процессы переработки природных энергоносителей и продуктов их переработки. Деструктивная гидрогенизация: Деструктивная гидрогенизация с получением искусственного жидкого топлива. Превращения углеводородов.	10	Расчет материаль-	16	_	_
6	Каталитиче- ские превра- щения и гидро- генизационные процессы	Каталитические превращения на поверхности твердых катализаторов. Влияние технологических факторов на протекание процесса: катализатор, давление, температура, исходный состав сырья. Жидкофазное и парофазное гидрирование. Газификация твердого топлива: Назначение и условия проведения газификации твердых топлив. Гидрогенизационные процессы. Теоретические основы синтеза из СО и водорода.	10	ного баланса процесса коксования каменного угля.	10	_	
	Всего аудиторны	их часов	54		36	_	_

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ π/π	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоем- кость в ак.ч.	Темы практических занятий	Трудо емкость в ак.ч.	Тема лабораторных занятий	Трудоем- кость в ак.ч.
1	Физико- хи- мические ос- новы разделе- ния природ- ных энерго- носителей. Стехиометрия и материаль- ные балансы.	Научные и теоретические основы физико-химических процессов переработки природных энергоносителей. Понятие о стехиометрии и материальном балансе процессов переработки природных энергоносителей.	4	Расчет равновесия в различных технологических процессах. Расчет моделей химических реакторов.	4		
2	Термоде- структивные и термоокис- лительные процессы.	Термодеструктивные превращения природных энергоносителей и продуктов их переработки. Термоокислительные процессы переработки природных энергоносителей и продуктов их переработки.	4	Расчет материального баланса процесса коксования каменного угля.	4	_	-
	Всего аудиторн	ых часов	8		8		

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» (https://www.dstu.education/sveden/eduQuality) при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала.

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ПК-3	Экзамен	Комплект контролирующих материалов для экзамена

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- практические работы всего 40 баллов;
- текущий контроль успеваемости- 40 баллов;
- реферат– 20 баллов.

Экзамен по дисциплине «Теоретические основы химической технологии природных энергоносителей и углеродных материалов» проставляется автоматически, если студент набрал в течение семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального. Если полученная в семестре сумма баллов не устраивает студента, во время зачетной недели студент имеет право повысить итоговую оценку в форме устного собеседования по приведенным ниже вопросам (п.п. 6.5).

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее задание

Домашнее задание не предусмотрено

6.3 Темы для рефератов (презентаций) – индивидуальное задание

- 1) Общая характеристика химической технологии углеродных материалов.
- 2) История развития химической технологии.
- 3) Понятие энергоносителя. Перспективные направления использования
- 4) Основные месторождения горячих ископаемых.
- 5) История Донецкого каменноугольного бассейна как сырьевой базы твердого топлива.
- 6) Процесс коксования каменного угля.
- 7) Улавливание летучих веществ в процессе коксования каменного угля.
- 8) Использование бензола.
- 9) Современное использование каменноугольной смолы.
- 10) Современные направления перспективного развития коксохимического производства.
- 11) Производство полимеров.
- 12) Электролиз в современной промышленности.
- 13) Характеристика производства синтетических материалов.
- 14) Сравнительные характеристики химических реакторов.
- 15) Требования, предъявляемые к химическим реакторам.
- 16) Современные экологические проблемы химических предприятий и их влияние на окружающую среду

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Варианты заданий для студентов очной формы обучения

Тема 1 Химия природных энергоносителей

- 1) Назовите основные виды твердого, жидкого и газообразного топлива. Где в настоящее время в основном используются древесное топливо?
- 2) Дайте характеристику древесного топлива (влажность, зольность, состав, теплотворная способность).
- 3) Охарактеризуйте понятие сырьевой базы коксования. Подготовка углей.
- 4) На какие марки и по какому принципу делятся бурые угли? На какие марки и по какому принципу делятся каменные угли? Что такое антрацит?
- 5) Дайте характеристику торфу (влажность, зольность, состав, теплотворная способность).
- 6) Характеристика основных и побочных продуктов коксования каменного угля.

- 7) Процессы, протекающие при коксовании. Коксуемость и спекание углей.
 - 8) Основные конструктивные элементы коксовой батареи
 - 9) Что такое пылевидное топливо?
 - 10) Назовите формулу теплового баланса горения топлива.

Тема 2 Физико-химические основы разделения природных энергоносителей

- 1) Привести формулировку закона действия масс. Как на основании этого закона составляется материальный баланс процесса?
- 2) Функцией чего является равновесная степень превращения сырья? От каких факторов она зависит?
- 3) Что характеризует производительность? В каких единицах она измеряется?
 - 4) Для чего служит интенсивность? Чем она может измеряться?

Тема 3 Стехиометрия и материальные балансы процессов переработки природных энергоносителей

- 1) Как на основании стехиометрии составляются материальные балансы?
- 2) Как с помощью опытных данных (лабораторных и пилотных) по исследованию процесса, литературных данных и опыту работы действующих установок (предприятий) составляют материальный баланс?
- 3) На основании какого закона составляется материальный баланс процесса?
- 4) Как на основании материального баланса определяется целый ряд важнейших технико-экономических показателей и характеристик технологии?
- 5) На основании чего рассчитываются основные показатели (критерии эффективности): степень превращения сырья, селективность, выходы продуктов?
- 6) Что характеризует селективность превращения сырья (избирательность)? Чем измеряется дифференциальная селективность?

Тема 4 Топливно-дисперсные системы

- 1) Какие системы называют дисперсными? Из чего они состоят? Что такое дисперсная фаза?
- 2) От чего в первую очередь зависят свойства дисперсных систем? Что такое дисперсность?
 - 3) Приведите классификацию дисперсных систем .
- 4) Среднетемпературное коксование (назначение, сырье, параметры процесса, готовая продукция).
 - 5) Представление о батарее коксовых печей.
 - б) Схема механизмов, обслуживающих коксовую батарею.
 - 7) Схема конденсации продуктов коксования.

- 8) Схема улавливания аммиака из коксового газа сатураторным методом
 - 9) Схема улавливания сырого бензола
- 10) Побочные продукты высокотемпературного коксования. Направления их использования.

Тема 5 Термодеструктивные и термоокислительные процессы

- 1) Основные способы разрыва (образования) химических связей в углеводородах.
- 2) Уравнение закона действующих масс. Уравнение Аррениуса.
- 3) Промежуточная частица, образующаяся при гомолитическом разрыве связи.
- 4) Промежуточная частица, образующаяся при гетеролитическом разрыве связи.
- 5) Понятие радикала. Основные свойства радикалов.
- 6) По какой связи происходит разрыв в радикале? Характерные реакции радикалов.
- 7) Какие температуры используются в теплотехнике в качестве температурных характеристик?
- 8) Какая температура называется калориметрической?
- 9) Что называется жаропроизводительностью?
- 10. От чего зависит калориметрическая температура?

Тема 6 Каталитические превращения и гидрогенизационные процессы

- 1) Основные реакции, протекающие при каталитическом риформинге.
- 2) Что понимают под каталитической изомеризацией?
- 3) Для чего предназначен процесс гидроочистки?
- 4) Отличие гидроочистки от гидрокрекинга.
- 5) Различия между гомолитическим, гетеролитическим и бифунциональным катализом.
- 6) Что такое гетеролитический разрыв?
- 7) Классификация каталитических реакций.
- 8) Что понимают под карбоний-ионом?
- 9) Классификация образования карбоний-ионов по механизму.
- 10) Отличие классического способа образования карбоний-ионов от неклассического.
- 11) Понятие катализатора. Необходимое условия для катализа. Свойства катализатора.

6.5 Вопросы для подготовки к экзамену

- 1) Что такое природные энергоносители? Дайте понятия возобновляемым и невозобновляемым энергоносителям.
- 2) Что такое твердое топливо?
- 3) В каких отраслях промышленности используется каменный уголь?
- 4) Какие характеристики каменного угля Донбасса?
- 5) Каковы свойства углерода и углеродных материалов?

- 6) Каково определение технологического процесса?
- 7) Что такое гомогенный процесс?
- 8) Что такое гетерогенный процесс?
- 9) Как читается закон действующих масс?
- 10) Что такое равновесие в технологических процессах?
- 11) Что такое обратимые процессы в гетерогенных системах?
- 12) Как читается Принцип Ле-Шателье?
- 13) Что такое движущая сила технологического процесса?
- 14) Какие вы знаете способы увеличения скорости процесса?
- 15) Что такое материальный и энергетический баланс?
- 16) Как читается закон сохранения массы и закон сохранения энергии?
- 17) Что такое химический реактор?
- 18) Как классифицируют химические реакторы?
- 19) Чем характеризуются адиабатические, изотермические и политермические реакторы?
- 20) Что такое абсорбция?
- 21) Что такое десорбция?
- 22) Что такое обжиг?
- 23) Что такое адсорбция?
- 24) Что такое растворение?
- 25) Что такое спекание?
- 26) Каково определение понятия каталитического процесса?
- 27) Какие классы каталитических реакций вы знаете?
- 28) Что такое пиролиз?
- 29) Что такое процесс коксования?
- 30) В чем заключается разница полукоксования и коксования?
- 31) Как происходит улавливание летучих продуктов коксования?
- 32) Что такое электролиз?
- 33) В чем состоит суть электролиза?
- 34) В каких отраслях промышленности используется электролиз?
- 35) Что такое органический синтез?
- 35) Какие процессы органического синтеза вы знаете?
- 36) Какова сырьевая база органического синтеза?
- 37) Что является целевым продуктом процесса каталитического риформинга?
 - 38) В чем заключается сущность процесса гидроочистки?
 - 39) Что является сырьем установки гидроочистки?
 - 40) В чем назначение процесса пиролиза?
- 41) В чем состоит назначение процесса термического крекинга дистиллятного сырья?

6.7 Примерная тематика курсовых работ

Курсовая работа не предусмотрена

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендованная литература

Основная литература

1. Основные технологии переработки нефтегазового сырья : учебное пособие / М. А. Косарева, с. г. стахеев, н. а. третьякова ; Министерство науки и высшего образования российской Федерации, Уральский федеральный университет. — Екатеринбург : Изд-во Урал. ун-та, 2022. — 110 с. : ил. — библиогр.: с. 108. — 30 экз. — ISBN 978-5-7996-3575-6. — текст : непосредственный.

https://elar.urfu.ru/bitstream/10995/119582/1/978-5-7996-3575-6 2022.pdf

2. Газификация твердых топлив: учебное пособие / Е.В. Егорова.— Москва: РТУ МИРЭА, 2022. – 35 с. Текст: электронный

 $\underline{https://fileskachat.com/file/113759}\underline{c8edf6bca7817b0f2ed1cc3df3191a37.ht}$ ml

3. Пономарева А.А., Самуйлова Е.О., Лесных А.В., Топливноэнергетические ресурсы – СПб: Университет ИТМО, 2021. – 107 с. https://books.ifmo.ru/file/pdf/3035.pdf

Дополнительная литература

1. Лекции по курсу "Процессы и аппараты химической технологии". - 4-е изд., стереотип. - СПб.: ХИМИЗДАТ, 2020. - 608 с.: ил. ISBN 078-5-93808-348-7

https://obuchalka.org/20220108140123/lekcii-po-kursu-processi-i-apparati-himicheskoi-tehnologii-frolov-v-f-2020.html

- 2. Игнатенков, В. И. Общая химическая технология: теория, примеры, задачи: Учебное пособие / В. И. Игнатенков. 2-е изд. Москва: Издательство Юрайт, 2020. 195 с. Электронный доступ: https://www.elibrary.ru
- 3. Кошелева, М. К. Общая химическая технология в примерах, лабораторных работах, задачах и тестах: Учебное пособие / М. К. Кошелева. 2-е издание, переработанное. Москва: Общество с ограниченной ответственностью «Научно-издательский центр ИНФРА-М», 2020. 210 с. Электронный доступ: https://www.elibrary.ru

Учебно-методическое обеспечение

1. Химическая технология углей и горючих сланцев: Методические указания к самостоятельной работе / Санкт-Петербургский горный университет. Сост.: М.Ю. Назаренко, С.Н. Салтыкова. СПб, 2021. 46 с.

<u>https://spmi.ru/sites/default/files/imci_images/univer/svedenia_jb_organizacii/metrek_baki/18.03.01-khimicheskaya-tekhnologiya-ugley-i-goryuchikh-slancev-3.pdf</u>

2. Химическая технология природных энергоносителей и углеродных материалов: Методические указания к лабораторным работам /Санкт-

Петербургский горный университет. Сост.: Н.К. Кондрашева, Э.Ю. Георгиева, М.Ю. Назаренко. СПб, 2020. 63 с. Режим доступа: <a href="https://spmi.ru/sites/default/files/imci_images/univer/svedenia_jb_organizacii/metrek_baki/-18.03.01-khimicheskaya-tekhnologiya-prirodnykh-energonositeley-i-uglerodnykh-materialov-lr.pdf?ysclid=lwq0tck2o6438505355

3. Природные энергоносители: Методические указания к практическим занятиям / Санкт-Петербургский горный университет/ Сост.: М.Ю. Назаренко, С.Н. Салтыкова. СПб, 2020, 103 с.

https://spmi.ru/sites/default/files/imci_images/univer/svedenia_jb_organizacii/metrek_baki/-18.03.01-prirodnye-energonositeli-pz.pdf

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ДонГТУ: официальный сайт.— Алчевск. URL: <u>library.dstu.education.</u>— Текст: электронный.
- 2. Научно-техническая библиотека БГТУ им. Шухова : официальный сайт. Белгород. URL: http://ntb.bstu.ru/jirbis2/. Текст: электронный.
- 3. Консультант студента: электронно-библиотечная система. Mockba. URL: http://www.studentlibrary.ru/cgi-bin/mb4x. Текст: электронный.
- 4. Университетская библиотека онлайн: электронно-библиотечная система.— URL: http://biblioclub.ru/index.php?page=main_ub_red.— Текст: электронный.
- 5. IPR BOOKS: электронно-библиотечная система.— Красногорск. URL: http://www.iprbookshop.ru/. Текст: электронный.
- 6. ЭБС Издательства "Университетская библиотека онлайн" http://e.lanbook.com/
 - 7. ЭБС Издательства "ЛАНЬ": [сайт]. https://e.lanbook.com/
- 8. Цифровая библиотека IPR SMART: [сайт]. https://www.iprbookshop.ru/
 - 9. Национальная электронная библиотека: [сайт]. https://rusneb.ru/
 - 10. Российская Государственная Библиотека: [сайт]. https://diss.rsl.ru/
- 11. Научная электронная библиотека «КиберЛенинка»: [сайт]. https://cyberleninka.ru/
- 12. Научная электронная библиотека eLIBRARY: [сайт]. https://elibrary.ru/defaultx.asp?/
- 13. Электронная библиотека «Астраханский государственный университет» https://biblio.asu.edu.ru
 - 14. ЭБС «Университетская Библиотека Онлайн» https://biblioclub.ru
- 15. Информационно-библиотечный комплекс «Политех» https://library.spbstu.ru

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО. Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местоположе- ние) учебных кабинетов
Вытяжной шкаф; Прибор КФК; Спектрофотометр; Термостат; Муфельная печь; Аппарат для встряхивания жидкости; Универсальный иономер ЭВ-74; Калориметр ОХ-12; Весы аналитические WA21; Весы технические, разновесы; Весы электронные торговые CAAZ; Фотоколориметр КГ -77; Вакумный насос; Магнитная мешалка; Холодильник «Ярна»; Плитка электрическая; Доска аудиторная; Таблица элементов Д.И.Менделеева; Наглядные пособия; Набор химических реактивов.	306 главный корпус Лаборатория физической химии и аналитического контроля
Интерактивная доска, компьютеры, планшеты, раздаточный материал для лабораторных работ, вытяжной шкаф, лабораторный стол преподавателя, лабораторные столы для студентов, учебный стенд, оборудование для лабораторных работ. Численность посадочных мест- 22 человека	406 главный корпус Лаборатория общей химии

Лист согласования РПД

Разработал старший преподаватель кафедры металлургических технологий	FEN	Е.С. Божанова
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
И.о. заведующего кафедрой металлургических технологий	Helleenf (подпись)	<u>Н.Г. Митичкина</u> (Ф.И.О.)
Протокол №1 заседания кафедры металлургических технологий		от 30.08.2024г.
И.о. декана факультета горно-металлургическ промышленности и строительства	ой (подпись)	Ө.В. Князьков (Ф.И.О.)
Согласовано		

Начальник учебно-методического центра

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений			
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:		
Основ	вание:		
Подпись лица, ответственного за внесение изменений			