Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46

Уникальный программный ключ: МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ 03474917c4d012283e5ad996a48a5e70bf8da057 (МИНОБРНАУКИ РОССИИ)

> ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

Факультет

Информационных технологий и автоматизации

производственных процессов

Кафедра

Электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И.о. проректора по учебной работе Д.В. Мулов

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ

11120 11	
	* 4 * *
Элементи	ы автоматизированного электропривода
	(наименование дисциплины)
13.03.02	2 Электроэнергетика и электротехника
	(код, наименование направления)
Электропривод и автом	матика промышленных установок и технологических комплексов
	(профиль подготовки)
Квалификация	бакалавр
	(бакалавр/специалист/магистр)
Форма обучения	очная, заочная
	(очная, очно-заочная, заочная)

1 Цели и задачи изучения дисциплины

Цели изучения учебной дисциплины:

- изучение основных технических характеристик элементов, входящих в состав систем автоматизированного электропривода.

Задачи изучения дисциплины:

- получений знаний и умения читать схемы силовой и оперативной частей системы электропривода, выполнять расчет и выбор элементов силовой части электропривода, выполнять технико-экономическое сравнение различных систем вентильного электропривода.

Дисциплина нацелена на формирование:

- профессиональных компетенций (ПК-1, ПК-4) выпускника.

2 Место дисциплины в структуре образовательной программы

Курс «Элементы автоматизированного электропривода» (Б1.В.11) входит в БЛОК 1 «Дисциплины (модули)», часть блока 1, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 «Электроэнергетика и электротехника».

Дисциплина базируется на следующих дисциплинах: «Теоретические основы электротехники», «Теория электропривода», «Электроника и микропроцессорная техника».

Приобретенные в процессе изучения дисциплины знания и практические навыки являются основой для изучения следующих дисциплин: «Автоматизированный электропривод типовых производственных механизмов», «Системы управления электроприводами».

Дисциплина изучается на 3 курсе в 6 семестре (очная форма) и на 4 курсе в 8 семестре (заочная форма).

Общая трудоемкость освоения дисциплины для очной формы обучения составляет 3,5 зачетных единицы, 126 ак.ч. Программой дисциплины предусмотрены лекционные (36 ак.ч.), лабораторные (18 ак.ч.) занятия и самостоятельная работа студента (72 ак.ч.).

Для заочной формы обучения программой дисциплины предусмотрены лекционные (6 ак.ч.), лабораторные (4 ак.ч.) и практические (2 ак.ч.) занятия и самостоятельная работа студента (114 ак.ч.).

3 Перечень результатов обучения по дисциплине, соотнесённых с планируемыми результатами освоения образовательной программы

По завершению освоения данной дисциплины обучающийся должен овладеть следующими компетенциями:

Таблица 1 – Компетенции, обязательные к освоению

Содержание компетенции	Код компетенции	Код и наименование индикатора достижения компетенции
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений ПК-1.2. Обосновывает выбор проектного решения ПК-1.3. Демонстрирует понимание взаимосвязи задач проектирования и эксплуатации
Способен участвовать в эксплуатации технологического оборудования объектов профессиональной деятельности	ПК-4	ПК-4.1. Способен участвовать эксплуатации технологического оборудования объектов профессиональной деятельности ПК-4.2. Способен применять методы и технические средства эксплуатации технологического оборудования объектов профессиональной деятельности

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 3,5 зачётных единицы, 126 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, текущему контролю, выполнение домашнего семестрового задания, самостоятельное изучение материала и подготовку к зачету.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС в соответствии с таблицей 2.

Таблица 2 – Распределение бюджета времени на СРС

Вид учебной работы	Ак.ч. Всего	Ак.ч. 6 сем.
Аудиторная работа, в том числе:	54	54
Лекции (Л)	36	36
Практические занятия (ПЗ)	-	-
Лабораторные работы (ЛР)	18	18
Курсовая работа/курсовой проект	-	-
Самостоятельная работа студентов (СРС), в том числе:	72	72
Подготовка к лекциям	9	9
Подготовка к лабораторным работам	4	4
Подготовка к практическим занятиям /	-	-
семинарам		
Выполнение курсовой работы / проекта	-	-
Расчетно-графическая работа (РГР)	-	-
Реферат (индивидуальное задание)	-	-
Домашнее семестровое задание	12	12
Подготовка к контрольной работе	-	-
Подготовка к коллоквиумам	2	2
Аналитический информационный поиск	18	18
Работа с литературой	18	18
Подготовка к зачету	9	9
Промежуточная аттестация – диф.зачет (Д/з)	Д/з	Д/з
Ак. ч.	126	126
3. e.	3,5	3,5

5 Содержание дисциплины

С целью освоения компетенции, приведенной в п.3 дисциплина разбита на 3 темы:

- тема 1 (Понятие элемента автоматизированного электропривода.
 Классификация. Настройки и характеристики элементов);
- тема 2 (Управляемые преобразователи напряжения и тока. Генератор постоянного тока. Датчики механических и электрических величин);
- тема 3 (Тиристорные преобразователи переменного тока в постоянный);

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 3 и 4 соответственно.

Таблица 3 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения)

№ п/1		Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Понятие элемента. Классификация. Настройки и характеристики элементов	Понятие и классификация частей систем АЭП. Функциональные схемы и свойства силовых и управляющих частей. Характеристика управления, внешняя характеристика, входное и выходное сопротивление элементам АЭП	4	-	-	-	-
2	Управляемые преобразователи напряжения и тока. Генератор постоянного тока. Датчики механических и электрических величин	Генератор постоянного тока. Основные координаты и свойства генератора как силового элемента АЭП. Обобщенное уравнение и структурная схема генератора. Передаточная функция и частотные характеристики. Способы форсирования процессов возбуждения генератора. Датчики механических и электрических величин	8	-	-	Исследование датчиков механических и электрических величин	8
3	Тиристорные преобразователи переменного тока в постоянный	Основные характеристики. Использование ТП в системах АЭП как силового элемента. Однофазная двухполупериодная схема ТП. Принципиальная схема, работа на обмотку возбуждения и якорную цепь двигателя постоянного тока. Диаграмма работы и главные соотношения. Трехфазная нулевая и мостовая схемы ТП. Схемная реализация ТП. Диаграммы работы и	24	-	-	Цифровое моделирование электропривода постоянного тока с реверсивным тиристорным преобразователем	10

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
		основные соотношения при их работе на активную и активно-индуктивную нагрузку. Явление коммутации в вентильных схемах. Режим прерывистого нагрузочного тока и его влияние на скоростные характеристики электродвигателя. Системы импульсно-фазового управления (СИФУ). Назначение. Блок-схема СИФУ. Принцип фазосмещения. Назначение и схемная реализация главных блоков СИФУ. Работа ТП в режиме зависимого инвертора тока					
Всего аудиторных часов		36	-		18		

Таблица 4 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения)

№ п/п	Наименование раздела дисциплины	Содержание лекционных занятий	Трудоемкость в ак.ч.	Темы практических занятий	Трудоемкость в ак.ч.	Тема лабораторных занятий	Трудоемкость в ак.ч.
1	Понятие элемента. Классификация. Настройки и характеристики элементов	Понятие и классификация частей систем АЭП. Функциональные схемы и свойства силовых и управляющих частей. Характеристика управления, внешняя характеристика, входное и выходное сопротивление элементам АЭП	2	-	-	-	-
2	Тиристорные преобразователи переменного тока в постоянный	Основные характеристики. Использование ТП в системах АЭП как силового элемента. Принципиальная схема. СИФУ	4	Расчет и выбор элементов реверсивного ТП	2	Цифровое моделирование электропривода постоянного тока с ТП	4
	Всего аудиторных	часов	6	2		4	

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала (https://www.dstu.education/images/structure/license certificate/polog kred modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 5.

Таблица 5 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование	Способ	Оценочное
компетенции	оценивания	средство
		Комплект
ПК-1, ПК-4	Диф. зачет	контролирующих
		материалов для диф. зачета

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- выполнение и защита лабораторных работ 60 баллов;
- выполнение и защита семестрового домашнего задания 40 баллов.

Зачет проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60% от максимального. В случае, если полученная в семестре сумма баллов не устраивает студента, он имеет право повысить итоговую оценку на зачете.

Шкала оценивания знаний при проведении промежуточной аттестации приведена в таблице 6.

Таблица 6 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашнее семестровое задание

В качестве домашнего семестрового задания студенты выполняют:

- работу над составлением конспекта изученного материала;
- расчет и выбор элементов реверсивного тиристорного преобразователя.

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Понятие элемента АЭП. Классификация. Настройки и характеристики элементов

- 1. Что такое элемент АЭП? Каковы характеристики и схемы соединения элементов?
 - 2. Приведите классификацию элементов по энергетическому признаку.
- 3. Приведите классификацию преобразователей по функциональному признаку.
 - 4. Какие вам известны полупроводниковые преобразователи?
- Тема 2. Управляемые преобразователи напряжения и тока. Генератор постоянного тока. Датчики величин
- 1. Что представляет собой электромашинный генератор постоянного тока? Каковы его основные параметры и характеристики?
- 2. Как выглядит структурная схема электромашинного генератора постоянного тока?
- 3. Какие датчики угла и рассогласования используются в следящих электроприводах?
 - 4. Какие существуют датчики электрических величин?

Тема 3. Тиристорные преобразователи переменного тока в постоянный

- 1. Какова структура и основные параметры тиристорного выпрямителя?
- 2. Как работает тиристорный выпрямитель на активную нагрузку (на примере однофазной двухполупериодной схемы)?
- 3. Как происходит работа тиристорного выпрямителя на активноиндуктивную нагрузку в непрерывном режиме (на примере однофазной двухполупериодной схемы)?
- 4. Что такое прерывистый режим работы тиристорного выпрямителя на активно-индуктивную нагрузку?
- 5. Что такое коммутация в схемах тиристорных выпрямителей? Как она влияет на вид внешней характеристики?
 - 6. Что представляет собой трехфазная нулевая схема выпрямления? Каковы её

характеристики, достоинства и недостатки?

- 7. Что представляет собой трехфазная мостовая схема выпрямления? Каковы её характеристики, достоинства и недостатки?
 - 8. Какие требования предъявляются к СИФУ?
 - 9. Каковы основные параметры и характеристики тиристора?
 - 10. Как выглядит блок-схема СИФУ? Каково назначение блоков?
 - 11. В чём заключается принцип вертикального управления?
 - 12. Как работает тиристорный выпрямитель в инверторном режиме?
 - 13. Каковы особенности однофазного зависимого инвертора тока?
- 14. Что представляет собой внешняя характеристика инвертора? Что такое предел коммутации?
- 15. Какие существуют способы реверсирования скорости и момента в электроприводе?
- 16. Как проводится сравнительный анализ схем реверсивных тиристорных электроприводов?
- 17. Что такое уравнительные токи в схемах реверсивных тиристорных электроприводов?
- 18. Как осуществляется совместное согласованное управление комплектами вентилей реверсивного тиристорного электропривода? Каковы преимущества и недостатки такого управления?
- 19. Как происходит переход из выпрямительного режима работы в инверторный в реверсивном тиристорном электроприводе?
- 20. Каковы особенности работы реверсивного тиристорного преобразователя на обмотку возбуждения электрической машины?
- 21. Что такое раздельное управление комплектами вентилей реверсивного тиристорного электропривода?
- 22. Каково назначение и принцип работы логического переключающего устройства?
 - 23. Что такое коэффициент мощности тиристорного выпрямителя?
- 24. Каково назначение тиристорного преобразователя как элемента замкнутой САР?
- 25. Что представляет собой передаточная функция тиристорного преобразователя?
- 26. Как форма опорного напряжения влияет на характеристики реверсивного TП?
- 27. В чём заключается сущность широтно-импульсного и частотно-импульсного регулирования?
 - 28. В чем отличие схем нереверсивных и реверсивных ШИП?
 - 29. Какова связь среднего выходного напряжения со скважностью импульсов?

- 30. Приведите основные схемы тиристорных ШИП.
- 31. Каково назначение и принцип работы узла принудительной коммутации?
- 32. Как классифицируются статические преобразователи частоты (СПЧ)?
- 33. Что представляют собой статические преобразователи частоты с промежуточным звеном постоянного тока и непосредственные преобразователи частоты?
 - 34. Как классифицируются автономные инверторы?
- 35. Как проводится сравнительный анализ автономных инверторов тока и напряжения?
- 36. Как работает трехфазный мостовой инвертор тока с междуфазной коммутацией? Какова его схема и принцип работы?
- 37. Что представляет собой трехфазный мостовой инвертор напряжения с пофазной коммутацией?
 - 38. Каковы элементы унифицированных блоков систем регулирования?

6.5 Вопросы для подготовки к зачету

- 1. Какова структура и основные параметры тиристорного выпрямителя?
- 2. Как работает тиристорный выпрямитель на активную нагрузку (на примере однофазной двухполупериодной схемы)?
- 3. Как происходит работа тиристорного выпрямителя на активноиндуктивную нагрузку в непрерывном режиме (на примере однофазной двухполупериодной схемы)?
- 4. Что такое прерывистый режим работы тиристорного выпрямителя на активно-индуктивную нагрузку?
- 5. Что такое коммутация в схемах тиристорных выпрямителей? Как она влияет на вид внешней характеристики?
- 6. Что представляет собой трехфазная нулевая схема выпрямления? Каковы её характеристики, достоинства и недостатки?
- 7. Что представляет собой трехфазная мостовая схема выпрямления? Каковы её характеристики, достоинства и недостатки?
 - 8. Какие требования предъявляются к СИФУ?
 - 9. Каковы основные параметры и характеристики тиристора?
 - 10. Как выглядит блок-схема СИФУ? Каково назначение блоков?
 - 11. В чём заключается принцип вертикального управления?
 - 12. Как работает тиристорный выпрямитель в инверторном режиме?
 - 13. Каковы особенности однофазного зависимого инвертора тока?
- 14. Что представляет собой внешняя характеристика инвертора? Что такое предел коммутации?
 - 15. Какие существуют способы реверсирования скорости и момента в

электроприводе?

- 16. Как проводится сравнительный анализ схем реверсивных тиристорных электроприводов?
- 17. Что такое уравнительные токи в схемах реверсивных тиристорных электроприводов?
- 18. Как осуществляется совместное согласованное управление комплектами вентилей реверсивного тиристорного электропривода? Каковы преимущества и недостатки такого управления?
- 19. Как происходит переход из выпрямительного режима работы в инверторный в реверсивном тиристорном электроприводе?
- 20. Каковы особенности работы реверсивного тиристорного преобразователя на обмотку возбуждения электрической машины?
- 21. Что такое раздельное управление комплектами вентилей реверсивного тиристорного электропривода?
- 22. Каково назначение и принцип работы логического переключающего устройства?
 - 23. Что такое коэффициент мощности тиристорного выпрямителя?
- 24. Каково назначение тиристорного преобразователя как элемента замкнутой САР?
- 25. Что представляет собой передаточная функция тиристорного преобразователя?
- 26. Как форма опорного напряжения влияет на характеристики реверсивного ТП?
- 27. В чём заключается сущность широтно-импульсного и частотно-импульсного регулирования?
 - 28. В чем отличие схем нереверсивных и реверсивных ШИП?
 - 29. Какова связь среднего выходного напряжения со скважностью импульсов?
 - 30. Приведите основные схемы тиристорных ШИП.
 - 31. Каково назначение и принцип работы узла принудительной коммутации?
 - 32. Как классифицируются статические преобразователи частоты (СПЧ)?
- 33. Что представляют собой статические преобразователи частоты с промежуточным звеном постоянного тока и непосредственные преобразователи частоты?
 - 34. Как классифицируются автономные инверторы?
- 35. Как проводится сравнительный анализ автономных инверторов тока и напряжения?
- 36. Как работает трехфазный мостовой инвертор тока с междуфазной коммутацией? Какова его схема и принцип работы?
 - 37. Что представляет собой трехфазный мостовой инвертор напряжения с

пофазной коммутацией?

- 38. Каковы элементы унифицированных блоков систем регулирования?
- 39. Что такое элемент АЭП? Каковы характеристики и схемы соединения элементов?
 - 40. Приведите классификацию элементов по энергетическому признаку.
- 41. Приведите классификацию преобразователей по функциональному признаку.
 - 42. Какие вам известны полупроводниковые преобразователи?
- 43. Что представляет собой электромашинный генератор постоянного тока? Каковы его основные параметры и характеристики?
- 44. Как выглядит структурная схема электромашинного генератора постоянного тока?
- 45. Какие датчики угла и рассогласования используются в следящих электроприводах?
 - 46. Какие существуют датчики электрических величин?

6.6 Тематика и содержание курсового проекта

Курсовой проект (работа) при изучении дисциплины не предусмотрен.

7 Учебно-методическое и информационное обеспечение дисциплины

7.1 Рекомендуемая литература

Основная литература

- 1. Щуров, Н. И. Синтез и анализ многофазных вентильных преобразователей : монография / Н. И. Щуров, С. В. Мятеж. Новосибирск : Новосибирский государственный технический университет, 2020. 202 с. ISBN 978-5-7782-4140-4. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/98816.html (дата обращения: 16.10.2023). Режим доступа: для авторизир. пользователей.
- 2. Разработка моделей элементов и систем автоматизированного электропривода в среде MatLab R2017b : учебно-методическое пособие / В.Б. Терехин [и др.].. Томск : Томский политехнический университет, 2021. 515 с. ISBN 978-5-4387-0953-4. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/134844.html (дата обращения: 20.08.2024). Режим доступа: для авторизир. пользователей
- 3. Герман-Галкин, С. Г. Виртуальные лаборатории полупроводниковых систем в среде MatlabSimulink: Учебник. СПб.: Издательство «Лань», 2021. 448 с. URL: https://3kl.dontu.ru/course/view.php?id=1572 . Режим доступа: для авториз. пользователей. Текст: электронный.

Дополнительная литература

- 1. Терехов, В.М. Элементы автоматизированного электропривода. М.: Энергоатомиздат, 1987. 224 с. URL: https://3kl.dontu.ru/course/view.php?id=1572 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Пилецкий, В.Т. Выбор элементов реверсивных тиристорных преобразователей электроприводов постоянного тока. К.: ИСДО, 1994. 148 с. URL: https://3kl.dontu.ru/course/view.php?id=1572 . Режим доступа: для авториз. пользователей. Текст: электронный.

Учебно-методическое обеспечение

- 1. Методические указания и программа лабораторного практикума по курсу «Элементы автоматизированного электропривода» (для студентов специальности 7.092203 дневной и заочной форм обучения) / Сост. Столяров В.Н. Алчевск: ДГМИ, 2013. 31 с. URL: https://3kl.dontu.ru/course/view.php?id=1572 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Методические указания к выполнению домашних заданий по курсу «Элементы автоматизированного электропривода» (для студентов специальности

7.092203 дневной и заочной форм обучения) / Сост. Столяров В.Н. – Алчевск: ДГМИ, 2013. – 31 с. – URL: https://3kl.dontu.ru/course/view.php?id=1572 . – Режим доступа: для авториз. пользователей. – Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Сайт дистанционного обучения ФГБОУ ВО «ДонГТУ» https://3kl.dontu.ru/
- 2. Научная библиотека ФГБОУ ВО «ДонГТУ» https://library.dontu.ru/
- 3. Электронно-библиотечная система ФГБОУ ВО «БГТУ им. В.Г. Шухова» http://ntb.bstu.ru
- 4. Электронно-библиотечная система Консультант студента: http://www.studentlibrary.ru/cgi-bin/mb4x
 - 5. Электронно-библиотечная система IPR BOOKS: http://www.iprbookshop.ru/
- 6. Сайт дистанционного обучения ФГБОУ ВО «ДонГТУ» https://moodle.dstu.education/

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям $\Phi \Gamma OC$ BO.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 7 – Материально-техническое обеспечение

	Адрес	
Наименование оборудованных учебных кабинетов	(местоположение)	
панменование оборудованных у понных каопнетов	учебных	
	кабинетов	
Специальные помещения:		
Научно-исследовательская лаборатория «Теории	Ауд. 118, корп.	
электропривода» (25 посадочных мест), оборудованная учебной	главный	
мебелью и лабораторными стендами		
Научно-исследовательская лаборатория «Теории	Ауд. 115, корп.	
автоматического управления», оборудованная учебной мебелью	главный	
и лабораторными стендами		
Компьютерный класс (25 посадочных мест), оборудованный	Ауд. 319, корп.	
учебной мебелью, компьютерами с неограниченным доступом к	главный	
сети Интернет		

Лист согласования РПД

Разработал		
доц. кафедры электромеханики	12	
им. А. Б. Зеленова		А.Г. Щелоков
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
Заведующий кафедрой	(подпись)	<u>Д. И. Морозов</u>
Протокол № 1 заседания кафедры		
электромеханики им. А.Б. Зеленова	ОТ	22.08.2024 г.
Декана факультета	(подпись)	В. В. Дьячкова (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	<u>Може</u> <u>П</u>	І.Н. Комаревцева (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	<u> </u>