Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Вишневский Дмитрий Александрович

Должность: Ректор

Дата подписания: 17.10.2025 15:06:46 Уникальный программный ключ:

03474917c4d012283e5ad996a48a5e70bf8da057

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (МИНОБРНАУКИ РОССИИ)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ДонГТУ»)

 Факультет
 информационных технологий и автоматизации производственных процессов

 Кафедра
 электромеханики им. А. Б. Зеленова

УТВЕРЖДАЮ И. о. проректора по учебной работе Д. В. Мулов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Теория электропривода	
	(наименование дисциплины)	
13.03.02 Э	лектроэнергетика и электротехника	
	(код, наименование направления)	
Электропривод	и автоматика промышленных установок	
и т	ехнологических комплексов	
	(профиль подготовки)	
Квалификация	бакалавр	
	(бакалавр/специалист/магистр)	
Форма обучения очная, заочная		
	(очная, очно-заочная, заочная)	1-1-

1 Цели и задачи изучения дисциплины

Цель дисциплины: формирование общекультурных и профессиональных компетенций, необходимых для решения теоретических и практических задач в профессиональной деятельности, связанной с проектированием, испытанием и эксплуатацией электроприводов переменного и постоянного тока.

Задачей дисциплины является изучение основных видов электроприводов и методов их расчета, а также режимов работы электроприводов, приобретение умений по проектированию и расчету электроприводов, выбора наиболее рациональных с технологической точки зрения типов электроприводов, физических и математических моделей, описывающие электрические и электромеханические процесс

Дисциплина направлена на формирование компетенций ОПК-3 и ПК-1 выпускника.

2 Место дисциплины в структуре ОПОП ВО

Логико-структурный анализ дисциплины: курс входит в БЛОК 1 «Дисциплины (модули)», часть блока 1, формируемую участниками образовательных отношений подготовки студентов по направлению 13.03.02 Электроэнергетика и электротехника (профиль «Электропривод и автоматика промышленных установок и технологических комплексов»).

Дисциплина основывается на базе дисциплин: «Физика», «Высшая математика», «Теоретические основы электротехники», «Электрические машины», «Прикладная механика».

Является основой для изучения следующих дисциплин: «Системы управления электроприводами», «Автоматизированный электропривод типовых производственных механизмов», «Производственная (технологическая) практика», «Производственная (преддипломная) практика», выпускная квалификационная работа.

Для изучения дисциплины необходимы компетенции, сформированные у студента для решения профессиональных задач деятельности, связанных с применением систем электропривода в различных сферах деятельности.

Курс является фундаментом для формирования навыков и умений по расчетам и проектированию систем электропривода в промышленности.

Общая трудоемкость освоения дисциплины составляет 10 зачетных единиц, 360 ак. ч. Программой дисциплины предусмотрены лекционные (81 ак.ч. для группы ЭМС, 12 ак. ч. для группы ЭМС-з), лабораторные занятия (54 ак.ч. для группы ЭМС, 10 ак.ч. для группы ЭМС-з), практические занятия (54 ак.ч. для группы ЭМС, 10 ак.ч. для группы ЭМС-з), и самостоятельная работа студента (81 ак.ч. для группы ЭМС, 328 ак.ч. для группы ЭМС-з).

Дисциплина изучается на 3 курсе в 5 и 6 семестрах для групп ЭМС и ЭМС-з. Форма промежуточной аттестации – экзамены в каждом семестре.

По дисциплине предусмотрен курсовой проект трудоемкостью 1 зачетная единица, 36 ак. ч. Группы ЭМС выполняют курсовой проект в 6 семестре. В группе ЭМС предусмотрены практические занятия (9 ак. ч. для группы ЭМС и 4 ак. ч. для гр. ЭМС-з) и самостоятельная работа студента (27 ак. ч. для групп ЭМС и 32 ак. ч. для группы ЭМС-з).

3 Перечень результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения ОПОП ВО

Процесс изучения дисциплины «Теория электропривода» направлен на формирование компетенций, представленных в таблице 3.1.

Таблица 3.1 – Компетенции, обязательные к освоению

Содержание компетен- ции	Код компетен- ции	Код и наименование индикатора достижения компетенции
Способен применять со- ответствующий физико- математический аппарат, методы анализа и моде- лирования, теоретиче- ского и эксперименталь- ного исследования при решении профессиональ- ных задач	ОПК-3	ОПК-3.1. Применяет соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач
Способен участвовать в проектировании объектов профессиональной деятельности	ПК-1	ПК-1.1. Выполняет сбор и анализ данных для проектирования, составляет конкурентно-способные варианты технических решений. ПК-1.2. Обосновывает выбор проектного решения.

4 Объём и виды занятий по дисциплине

Общая трудоёмкость учебной дисциплины составляет 10 зачётных единицы, 360 ак. ч. Трудоемкость курсового проекта составляет 1 зачетную единицу, 36 ак. ч.

Самостоятельная работа студента (СРС) включает проработку материалов лекций, подготовку к лабораторным работам, подготовку к практическим занятиям, текущему контролю, самостоятельное изучение материала и подготовку к экзаменам, выполнение курсового проекта.

При организации внеаудиторной самостоятельной работы по данной дисциплине используются формы и распределение бюджета времени на СРС для очной формы обучения в соответствии с таблицей 4.1.

Таблица 4.1 – Распределение бюджета времени на СРС

D	Всего	Ак .ч. по с	семестрам
Вид учебной работы	ак. ч.	4	5
Аудиторная работа, в том числе:	189	108	81
Лекции (Л)	81	36	45
Практические занятия (ПЗ)	54	36	18
Лабораторные работы (ЛР)	54	36	18
Курсовая работа/курсовой проект	9	-	9
Самостоятельная работа студентов (СРС), в том числе:	171	90	81
Подготовка к лекциям	36	18	18
Подготовка к лабораторным работам	39	27	12
Подготовка к практическим занятиям / семинарам	27	18	9
Выполнение курсовой работы / проекта	32	-	32
Расчетно-графическая работа (РГР)		-	-
Реферат (индивидуальное задание)		-	-
Домашнее задание	18	18	-
Подготовка к контрольной работе		-	-
Подготовка к коллоквиумам		-	-
Аналитический информационный поиск	6	3	3
Работа в библиотеке	4	2	2
Подготовка к экзамену	9	4	5
Промежуточная аттестация – экзамен (Э)	Э	Э	Э
Общая трудоемкость дисциплины			
Ак. ч.	360	198	162
3. e.	10	5.5	4.5

5 Содержание дисциплины

С целью освоения компетенций, приведенных в п. 3 дисциплина разбита на 13 тем:

5-ый семестр

- *тема 1* (Введение);
- mema~2 (Приведение моментов инерции системы электропривода к одному валу);
 - тема 3 (Приведение моментов сопротивления к одному валу);
 - тема 4 (Основное уравнения движения электропривода);
- *тема 5* (Электромеханические свойства электропривода с двигателями постоянного тока независимого возбуждения);
- *тема* 6 (Электромеханические свойства электропривода с двигателями постоянного тока последовательного возбуждения);
- *тема* 7 (Электромеханические свойства электропривода с двигателями переменного тока).

6-ой семестр

- тема 8 (Система генератор-двигатель);
- тема 9 (Система тиристорный преобразователь-двигатель);
- тема 10 (Критерии выбора мощности электропривода);
- тема 11 (Методы проверки мощности двигателя по нагреву);
- тема 12 (Системы электропривода с механической связью);
- тема 13 (Системы электропривода с электрическим валом).

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.4 соответственно.

Виды занятий по дисциплине и распределение аудиторных часов для очной и заочной формы приведены в таблице 5.1 - 5.4 соответственно.

Таблица 5.1 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 5 семестр)

	Виды запи	тии по дисциплине и распределение ау	дпторг	TIDIA TUCOD (O IIIUM	Popula	e or remains, s comecipy	
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Введение	Определение электропривода и его функциональная схема. Координаты и параметры электропривода.	2	Функциональная схема электропривода. Виды единиц измерения	2	Вводное занятие. Техника безопасности при проведении лабораторных работ в ауд.118	2
2	Приведение моментов инерции системы элек-	Приведение моментов инерции системы электропривода к одному валу при вращательном движении.	2	Определение мо- мента инерции при вращ. движен.	2	Предварительные расчеты к лабораторной работе №1	2
2	тропривода к одному валу.	Приведение моментов инерции системы электропривода к одному валу при поступательном движении.	2	Определение мо- мента инерции при пост. движен.	2	Выполнение лабораторной работы №1	2
3	Приведение моментов сопротивления к одному	Приведение моментов сопротивления системы электропривода к одному валу при вращательном движении.	2	Виды статических моментов.	2	Обработка и оформление результатов лабораторной работы №1	2
3	валу	Приведение моментов сопротивления системы электропривода к одному валу при поступательном движении.	2	Приведение мо- ментов сопротив- ления к валу	2	Защита лабораторной ра- боты №1	2
	Основное уравнения	Основное уравнения движения электропривода. Время пуска, торможения и реверса привода	2	Задачи на определение быстродействия	2	Подготовка к лабораторной работе №2	2
4	движения электропри- вода	Потери электропривода при переходных процессах. Путь электропривода при пуске, торможении и реверс	2	Задачи на определение пути.	2	Предварительные расчеты к лабораторной работе №2	2

Продолжение таблицы 5.1

11002	толжение таолицы э.т						
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		Схема включения двигателя постоянного тока независимого возбуждения и его математическая модель	2	Статические характеристики ДПТ НВ	2	Отработка лабораторной работы №2	2
5	Электромеханические свойства электропривода с двигателями постоянного тока незави-	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Расчет пусковой диаграммы ДПТ НВ	2	Обработка результатов и оформление лабораторной работы №2	2
	симого возбуждения.	Тормозные режимы двигателя постоянного тока независимого возбуждения: рекуперация, динамическое торможение и реверс	2	Статические и динамические характеристики ДПТ НВ	2	Защита лабораторной работы №2	2
		Схема включения двигателя постоянного тока последовательного возбуждения и его математическая модель	2	Статические характеристики ДПТ ПВ	2	Отработка лабораторной работы №3	2
6	Электромеханические свойства электропривода с двигателями постоянного тока последовательного возбужде-	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Расчет пусковой диаграммы ДПТ ПВ	2	Обработка результатов и оформление лабораторной работы №3	2
	вательного возоужде- ния.	Тормозные режимы двигателя постоянного тока последовательного возбуждения: отсутствие рекуперации, динамическое торможение и реверс	2	Статические и динамические характеристики ДПТ ПВ	2	Защита лабораторной работы №3	2

Продолжение таблицы 5.1

№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		Виды асинхронных двигателей в электроприводе. Их преимущества, недостатки и области применения	2	Расчет параметров АД по его паспортным данным	2	Предварительные расчеты к лабораторной работе № 4	2
		Схема включения и способы регулирования скорости асинхронного электропривода с короткозамкнутым ротором	2	Аналитический расчет пусковой диаграммы АД с ФР	2	Отработка лабораторной работе № 4	2
7	Электромеханические свойства электропривода с двигателями перемен-	Математическая модель асинхронного двигателя. Формула Клосса	2	Графический расчет пуска	2	Обработка результатов лабораторной работы № 4	2
	ного тока.	Способы регулирования скорости асинхронного двигателя с фазным ротором	2	Расчет характеристики АД в противовключении	2	Оформление лабораторной работы № 4	2
		Тормозные режимы асинхронного электроприв1ода: рекуперация, различные виды динамического торможения, противовключение	2	Расчет характеристики АД в режиме динамического торможения	2	Защита лабораторной работы № 4	2
	Всего а	удиторных часов	36	_	36	_	36

Таблица 5.2 – Виды занятий по дисциплине и распределение аудиторных часов (очная форма обучения, 6 семестр)

		тии по дисциплине и распределение ау	дигор		<u>м</u>		m
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость и ак. ч.	Темы практических занятий	Трудоемкость и ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
		Функциональная схема системы генератордвигатель. Ее область применения сегодня	2	Выбор элементов системы генера-	2	Предварительные расчет к лабораторной работе № 5	2
		Принцип действия системы генератор-двигатель	2	тор-двигатель и расчет их параметров			
	Cuerano peneneron unu	Математическая модель системы генератордвигатель	2	Разнот напомотпор	2	Отработка лабораторной работы № 5	2
8	Система генератор-дви- гатель	Статические характеристики системы генератор-двигатель	2	Расчет параметров системы генератор-двигатель			
		Способы форсировки переходных процессов в системе генератор-двигатель	2	тор-двигатель			
		Виды торможения в системе генератор-двигатель	2	Расчет статиче-	2	Защита лабораторной работы № 5	2
		Достоинства, недостатки и область применения системы генератор-двигатель	2	стик системы гене- ратор-двигатель			
		Функциональная схема системы ТП-Д Принцип действия системы ТП-Д	2 2	Выбор элементов системы ТП-Д	2	Предварительные расчет к лабораторной работе № 6	2
	Система тиристорный	Математическая модель системы ТП-Д Статические характеристики системы ТП-Д	2 2	Расчет параметров системы тиристор-	2	Отработка лабораторной работы № 6	2
9	преобразователь - двига-	Коэффициент мощности системы ТП-Д	2	ный преобрдвиг.		1	
	тель	Тормозные режимы в системе ТП-Д Достоинства, недостатки и область приме-	2	Расчет статиче-	2	Защита лабораторной ра- боты № 6	2
		нения системы тиристорный преобразователь - двигатель	2	стик системы ТП-			
		тыв двигатыв	<u> </u>	1 🖰		l	

Продолжение таблицы 5.2

<u> </u>	CONNECTION TROUBLES						
№ п/п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
10	Критерии выбора мощ- ности двигателя	Требования к приводным электродвигате- лям	2				
11	Методы проверки мощ- ности двигателя по нагреву	Выбор мощности двигателя при продолжительном режиме работы Метод средних потерь Метод эквивалентных величин Метод эквивалентных ускорений Метод средних перемещений	2 2 2 2 2	Выбор мощности электродвигателя в повторно-кратковременном режиме работы	2	Предварительные расчеты к лабораторной работе № 7	2
12	Системы электропривода с механической связью	Электромеханические свойства двухдвигательного электропривода с двигателями постоянного тока	2	Расчет механиче- ских характери- стик 2 двигатель- ного привода	2	Выполнение лабораторной работы № 7	2
13	Системы электропривода с электрическим валом	Система с общим реостатом. Электропривод с асинхронными и синхронными вспомогательными машинами	3	Расчет механиче- ских характери- стик электропри- вода с общим рео- статом	2	Защита лабораторной работы № 7	2
	Всего аудиторных часов				18		18

Таблица 5.3 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 5 семестр)

		1 1	, , , <u> </u>			<u> </u>	
№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Основное уравнения движения электропри- вода	Основное уравнения движения электропривода. Время пуска, торможения и реверса привода	2	Задачи на определение быстродействия	2	Вступительное занятие. Отработка лабораторной работы № 1	2
2	Электромеханические свойства электропривода с ДПТ НВ	Способы регулирования скорости электропривода постоянного тока: реостатное регулирование, изменение напряжения на якоре и магнитного потока	2	Статические ха- рактеристики ДПТ НВ	2	Отработка лабораторной работы № 2	2
3	Электромеханические свойства электропривода с двигателями переменного тока	Способы регулирования скорости асинхронного двигателя с фазным ротором	2	Аналитический расчет пусковой диаграммы АД с ФР	2	Отработка лабораторной работе № 4	2
	Всего	аудиторных часов	6	_	6	_	6

Таблица 5.3 – Виды занятий по дисциплине и распределение аудиторных часов (заочная форма обучения, 6 семестр)

№ п/ п	Наименование темы (раздела) дисциплины	Содержание лекционных занятий	Трудоемкость в ак. ч.	Темы практических занятий	Трудоемкость в ак. ч.	Темы лабораторных занятий	Трудоемкость в ак. ч.
1	Система генератор - двигатель	Статические характеристики системы генератор - двигатель	2	Расчет электроме-			
2	Система тиристорный преобразователь - двига- тель	Статические характеристики системы тиристорный преобразователь - двигатель	2	ханических харак- теристик системы ТП-Д	2	Отработка лабораторной работы № 6	2
3	Методы проверки мощ- ности двигателя по нагреву	Метод средних потерь. Методы эквивалентных величин.	2	Проверка выбранного электродвигателя по нагреву	2	Отработка лабораторной работы № 7	2
	Всего	аудиторных часов	6	_	4	_	4

6 Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации по итогам освоения дисциплины

6.1 Критерии оценивания

В соответствии с Положением о кредитно-модульной системе организации образовательного процесса ФГБОУ ВО «ДонГТУ» при оценивании сформированности компетенций по дисциплине используется 100-балльная шкала

(https://www.dstu.education/images/structure/license_certificate/polog_kred modul.pdf).

Перечень компетенций по дисциплине и способы оценивания знаний приведены в таблице 6.1.

Таблица 6.1 – Перечень компетенций по дисциплине и способы оценивания знаний

Код и наименование компетенции	Способ оценивания	Оценочное средство
ОПК-3, ПК-1	Экзамен	Комплект контролирующих материалов для экзамена
ОПК-3, ПК-1	Дифференциро- ванный зачет	Комплект контролирующих материалов для защиты курсового проекта

Всего по текущей работе в семестре студент может набрать 100 баллов, в том числе:

- лабораторные работы всего 40 баллов (5 семестр);
- практические работы всего 60 баллов (5 семестр);
- лабораторные работы всего 40 баллов (6 семестр);
- практические работы всего 60 баллов (6 семестр);

Экзамен проставляется автоматически, если студент набрал в течении семестра не менее 60 баллов и отчитался за каждую контрольную точку. Минимальное количество баллов по каждому из видов текущей работы составляет 60 % от максимального.

Экзамены по дисциплине «Теория электропривода» проводятся по результатам работы в семестре. В случае, если полученная в семестре сумма баллов не устраивает студента, во время сессии студент имеет право повысить итоговую оценку либо в форме устного собеседования по приведенным ниже вопросам (п. 6.4), либо в результате тестирования.

Шкала оценивания знаний при проведении промежуточной аттестации

приведена в таблице 6.
Таблица 6.2 – Шкала оценивания знаний

Сумма баллов за все виды	Оценка по национальной шкале
учебной деятельности	зачёт/экзамен
0-59	Не зачтено/неудовлетворительно
60-73	Зачтено/удовлетворительно
74-89	Зачтено/хорошо
90-100	Зачтено/отлично

6.2 Домашние задания

Домашнее задание для студентов 3-го курса специальности 13.03.02 состоит из пяти текстовых задач, при решении которых необходимо показать знание уравнения движения электропривода, способов определения сил и моментов статического сопротивления движению для различных типовых промышленных установок. В этих задачах вычисляются также параметры движения (скорость, ускорение, путь, время) и определяются энергетические режимы работы электропривода, В некоторых задачах выполняется определение момента инерции электропри-вода на основе экспериментальных данных или расчеты момента инерции тел вращения по их размерам.

Для определения перечня задач, входящих в семестровое задание, студенту необходимо знать номер своего варианта по списку группы и но-мер своей группы. По этим данным в таблице 6.3 студент определит номера задач для своего варианта задания.

Таблица 6.3 – Варианты задания

Номер варианта	Номера задач, входящих в семестровое задание
1	2
1	1, 60, 43, 106, 110
2	62, 3, 37, 118, 113
3	41, 5, 99, 77, 111
4	7, 102, 66, 45, 108
5	30, 9, 68, 87, 104
6	59, 90, 11, 57, 94
7	105, 96, 13, 72, 35
8	15, 74, 93, 117, 53
9	69, 17, 91, 97, 32
10	107, 78, 19, 56, 89
11	21, 33, 80, 100, 121
12	103, 23, 54, 83, 122
13	25, 84, 34, 112, 87
14	73, 49, 27, 109, 90
15	29, 76, 114, 36, 94
16	2, 50, 119, 70, 101

Номер варианта	Номера задач, входящих в семестровое задание
1	2
17	92, 47, 79, 4, 97
18	67, 6, 48, 124, 101
19	8, 116, 82, 51, 123
20	38, 64, 10, 115, 105
21	85, 12, 95, 52, 120
22	14, 61, 31, 88, 108
23	98, 44, 75, 16, 111
24	18, 71, 86, 55, 115
25	20, 58, 63, 125, 113

6.3 Темы рефератов

Написание рефератов при изучении дисциплины не предусмотрено.

6.4 Оценочные средства для самостоятельной работы и текущего контроля успеваемости

Тема 1. Введение.

- 1. Определение электропривода.
- 2. Функциональная схема электропривода.
- 3. Координаты и параметры электропривода.
- 4. Режимы работы электропривода.
- 5. Классификация электроприводов.

Тема 2. Приведение моментов инерции системы электропривода к одному валу.

- 1. Приведение моментов инерции системы электропривода к одному валу при вращательном движении.
- 2. Приведение моментов инерции механической части системы электропривода к одному валу при поступательном движении.

Тема 3. Приведение моментов сопротивления к одному валу.

- 1. Виды статических моментов.
- 2. Приведение моментов сопротивления к одному вала при вращающемся движении.
- 3. Приведение моментов сопротивления системы электропривода к одному валу при поступательном движении.

Тема 4. Основное уравнения движения электропривода.

- 1. Основное уравнения движения электропривода при разной жесткости связующих валов.
 - 2. Время пуска, торможения и реверса привода.
 - 3. Путь, совершаемый электроприводом при переходных процессах.

- 4. Потери энергии в механической части электропривода при переходных процессах.
- Тема 5. Электромеханические свойства электропривода с двигателями постоянного тока независимого возбуждения.
 - 1. Схема включения ДПТ НВ.
 - 2. Математическая модель ДПТ НВ.
 - 3. Статические характеристики ДПТ НВ.
 - 4. Способы регулирования скорости ДПТ НВ.
 - 5. Тормозные режимы ДПТ НВ.

Тема 6. Электромеханические свойства электропривода с двигателями постоянного тока последовательного возбуждения.

- 1. Схема включения ДПТ НВ.
- 2. Математическая модель ДПТ НВ.
- 3. Статические характеристики ДПТ НВ.
- 4. Способы регулирования скорости ДПТ НВ.
- 5. Тормозные режимы ДПТ НВ.

Тема 7. Электромеханические свойства электропривода с двигателями переменного тока.

- 1. Виды асинхронных двигателей.
- 2. Механические характеристики асинхронных двигателей.
- 3. Формула Клосса.
- 4. Пуско-тормозные режимы работы электропривода переменного тока
- 5. Способы регулирования его скорости.

Тема 8. Система генератор-двигатель

- 1. Функциональная схема системы генератор-двигатель
- 2. Принцип действия системы Г-Д.
- 3. Математическая модель системы генератор-двигатель.
- 4. Статические и динамические характеристики системы Г-Д.
- 5. Форсировка переходных процессов в системе Г-Д.
- 6. Виды торможения в системе генератор-двигатель.

Тема 9. Система тиристорный преобразователь-двигатель.

- 1. Функциональная схема системы тиристорный преобразователь-двигатель
 - 2. Принцип действия системы ТП-Д.
- 3. Математическая модель системы тиристорный преобразователь-двигатель.
 - 4. Статические и динамические характеристики системы.
 - 5. Коэффициент мощности системы.

Тема 10. Критерии выбора мощности электропривода.

- 1. Требования к приводным электродвигателям.
- 2. Область применения электропривода постоянного тока
- 3. Область применения электропривода переменного тока.

Тема 11. Методы проверки мощности двигателя по нагреву.

- 1. Метод средних потерь.
- 2. Методы эквивалентных момента, мощности и тока.
- 3. Выбор двигателя по допустимому числу включений в час.
- 4. Определение времени движения электропривода при треугольной тахограмме.
 - 4. Метод эквивалентных ускорений.
 - 5. Метод средних перемещений.

Тема 12. Системы электропривода с механической связью.

- 1. Выравнивание нагрузок в таких системах.
- 2. Двухдвигательный электропривод постоянного тока.
- 3. Двухдвигательный электропривод переменного тока.

Тема 13. Системы электропривода с электрическим валом.

- 1. Система с общин реостатом.
- 2. Электропривод с вспомогательными асинхронными машинами.
- 3. Электропривод с вспомогательными синхронными машинами.

6.5 Вопросы для подготовки к экзаменам

Вопросы для подготовки к экзамену за 5 семестр

- 1. Что входит в состав электропривода?
- 2. Что входит в функциональную схему электропривода?
- 3. Каковы координаты и параметры электропривода?
- 4. Какие бывают режимы работы электроприводов?
- 5. Какие существуют классификации электроприводов?
- 6. Что входит в основное уравнение движения электропривода?
- 7. Как определить время пуска, торможения и реверса электропривода?
- 8. Как определить путь, проходимый электроприводом, за время торможения?
- 9. Как найти потери в механической части электропривода при переходных процессах?
 - 10. Как соединены обмотка якоря и обмотка возбуждения ДПТ НВ?
 - 11 Какие уравнения входят в математическую модель ДПТ НВ?
 - 12. Как регулируют скорость ДПТ НВ?

- 13. Для чего нужно электрическое торможение электропривода?
- 14. Как получить режим динамического торможения ДПТ НВ?
- 15. Как получить режим противовключения ДПТ НВ?
- 16. Что такое реверс электропривода и как его получить?
- 17. Как соединены обмотка якоря и обмотка возбуждения ДПТ ПВ?
- 18. Какие уравнения входят в математическую модель ДПТ ПВ?
- 19. Как регулируют скорость ДПТ ПВ?
- 20. Для чего нужно электрическое торможение электропривода?
- 21. Как получить режим динамического торможения ДПТ ПВ?
- 22. Как получить режим противовключения ДПТ ПВ?
- 23. Какие виды асинхронных двигателей существуют?
- 24. Что такое формула Клосса? Что она описывает?
- 25. Как регулируют скорость асинхронного двигателя с короткозамкнутым ротором?
- 26. Как регулируют скорость асинхронного двигателя с фазным ротором?
- 27. Какие достоинства, недостатки и области применения асинхронных двигателей с фазным и короткозамкнутым ротором?
 - 28. Как среверсировать асинхронный электропривод?
 - 29. Как быстро остановить асинхронный электропривод?
 - 30. Каковы требования к приводным электродвигателям?
- 31. Как рассчитать мощность двигателя для механизма, работающего в длительном режиме?
- 32. Как рассчитать мощность двигателя для механизма, работающего в повторно-кратковременном режиме?
- 33. Каковы достоинства, области применения и недостатки электроприводов постоянного и переменного тока?

Вопросы для подготовки к экзамену за 6 семестр

- 1. Какова функциональная схема системы генератор-двигатель и принцип ее действия?
 - 2. Какова математическая модель системы генератор-двигатель?
 - 3. Каковы статические и динамические характеристики системы?
- 4. Для чего нужна форсировка переходных процессов? Как она осуществляется?
- 5. Какие виды торможения используются в системе генератор-двигатель?

- 6. Каковы функциональная схема системы тиристорный преобразователь-двигатель и принцип ее действия?
- 7. Какова математическая модель системы тиристорный преобразователь-двигатель?
 - 8. Каковы статические и динамические характеристики системы?
 - 9. Как рассчитать коэффициент мощности системы ТП-Д?
 - 10. Какие существуют критерии выбора мощности электропривода?
 - 11. В чем заключается метод средних потерь?
 - 12. В чем суть методов эквивалентных момента, мощности и тока?
 - 13. Как выбрать двигатель по допустимому числу включений в час?
- 14. Как определить время движения электропривода при треугольной тахограмме?
 - 15. Что позволяет найти метод эквивалентных ускорений?
 - 16. Для каких механизмов разработан метод средних перемещений?
- 17. Что такое системы электропривода с механической связью? Как осуществить выравнивание нагрузок в таких системах?
 - 18. Как устроены системы электропривода с электрическим валом?
 - 19. Что такое система с общим реостатом?
- 20. Для чего применяют электропривод со вспомогательными машинами?

6.6 Примерная тематика курсовых работ (проектов)

По дисциплине предусмотрен курсовой проект на тему «Расчет мощности двигателя и переходных процессов в системе Г-Д» трудоемкостью 1 зачетная единицы, 36 ак. ч. Группы ЭМС и ЭМС-з выполняют курсовую работу в 6 семестре. В группе ЭМС предусмотрены практические занятия (9 ак. ч. для группы ЭМС и 4 ак. ч. для гр. ЭМС-з) и самостоятельная работа студента (27 ак. ч. для групп ЭМС и 32 ак.ч. для группы ЭМС-з). Курсовая работа выполняется по методическим указаниям:

Методические указания к выполнению курсового проекта по теории электропривода на тему «Расчет мощности двигателя и переходных процессов в системе Г-Д» (для студентов направления 13.03.02 Электроэнергетика и электротехника, профиль подготовки "Электропривод и автоматика промышленных установок и технологических комплексов ") / Сост. А.Б. Зеленов, И.С. Шевченко, Д.И. Морозов. — Алчевск, ДонГТУ, 2016. — 93 с. https://moodle.dstu.education/pluginfile.php/56515/mod_resource/content/1/КП%20ЭА%20v14.pdf.

Кроме этого, используется литература, приведенная в разделе 7.1.

Курсовой проект состоит из расчетно-пояснительной записки объемом 35-40 страниц. В ней должны содержаться следующие разделы:

Введение;

- 1. Выбор типа двигателя в каталоге и проверка загрузки с учетом ухудшения условий вентиляции и температуры окружающей среды.
- 2. Выбор генератора системы Γ -Д, его приводного двигателя и возбудителя генератора.
 - 3. Расчет параметров разомкнутой системы Г-Д
- 4. Математическое описание переходных процессов в разомкнутой системе Γ-Д и составление ее структурной схемы.
- 5. Расчет переходных процессов в разомкнутой системе Г-Д и построение фазовых портретов при пуске, реверсе и торможении.
- 6. Построение нагрузочной диаграммы для одного цикла работы механизма на основании рассчитанных переходных процессов і (t),
- 7. Разработка конструкции установки генератора с приводным двигателем на фундаменте.

При выполнении конструкторской разработки необходимо воспользоваться элементами САПР.

7 Учебно-методическое и информационное обеспечение дисциплины

Уровень необходимого учебно-методического и информационного обеспечения (научно-техническая литература, технологические инструкции, государственные стандарты, технические условия, источники информации в сети Интернет и др.) учебного процесса на кафедре электромеханики имени А.Б. Зеленова соответствуют требованиям подготовки бакалавров.

7.1 Рекомендуемая литература

Основная литература

- 1. Бигеев В. А. Основы металлургического производства: учебник для вузов / В. А. Бигеев, К. Н. Вдовин, В. М. Колокольцев [и др.]; под общей редакцией В. М. Колокольцева. 4-е изд., стер. Санкт-Петербург: Лань, 2023. 616 с. URL: https://reader.lanbook.com/book/267362?demoKey=4dbc7a1fa24b724d64fb29859 8b00799#2. (дата обращения: 20.08.2024). Текст: электронный.
- 2. Рудской, А. И. Теория и технология прокатного производства [Текст]. Учебное пособие / А. И. Рудской, В. А. Лунев. СПб: Лань, 2023. 528 с. URL: https://glavkniga.su/book/682925 (дата обращения: 20.08.2024). Текст : электронный.
- 3. Клим, О. Н. Основы металлургического производства. / О. Н. Клим. Москва : Издательство Юрайт, 2023. 168 с. ISBN 978-5-534-13295-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/519357. (дата обращения: 20.08.2024). Текст: электронный.

Дополнительная литература

- 1. Грудев, А. П. Технология прокатного производства: Учебник для вузов / А. П. Грудев, Л. Ф. Машкин, М. И. Ханин. М.: Металлургия, 1994. 656 с. URL: https://moodle.dstu.education/mod/folder/view.php?id=90543. Режим доступа: для авториз. пользователей. Текст: электронный.
- 2. Рудской, А. И. Теория и технология прокатного производства [Текст]. Учебное пособие / А. И. Рудской, В. А. Лунев. СПб: Наука, 2008. 527 с. URL: https://library.dstu.education/akkred/denischenko/rudskoy.pdf. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Коцюбинский, В.С. Выбор мощности электропривода общепромышленных механизмов: учебное пособие, 2-е изд., перераб. и доп./ В.С. Коцюбинский. Алчевск: ДонГТУ, 2007. 205 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. —

Текст: электронный.

- 4. Белов, М.П. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов: учебник для студентов высших учебных заведений / М.П. Белов, В.А. Новиков, Л.П. Рассудов. 3-е изд., испр. М.: Издательский центр «Академия», 2007. 576 с. URL: https://moodle.dstu.education/course/view.php?id=535 . Режим доступа: для авториз. пользователей. Текст: электронный.
- 5. Зименков, М.Г. Справочник по наладке электрооборудования промышленных предприятий / М.Г. Зименков, Г.В. Розенберг, Е.М. Феськов. М.: Энергоатомиздат, 1983. 480 с. URL: https://moodle.dstu.education/course/view.php?id=1640. Режим доступа: для авториз. пользователей. Текст: электронный.
- 6. Дорофеюк, А.С. Справочник по наладке электроустановок / А.С. Дорофеюк, А.П. Хечумян. М.: Энергия, 1976. 560 с. URL: https://moodle.dstu.education/course/view.php?id=1640 . Режим доступа: для авториз. пользователей. Текст: электронный.

Учебно-методическое обеспечение

1. Методические указания к домашнему заданию №4 «Проектирование и расчет релейно-контакторной системы управления» по курсу «Теория электропривода» / Сост.: М.А. Ямковая. — Алчевск: ДонГТУ, 2015. — 20 с — URL: https://moodle.dstu.education/course/view.php?id=1640 . - Режим доступа: для авториз. пользователей. — Текст: электронный.

7.2 Базы данных, электронно-библиотечные системы, информационно-справочные и поисковые системы

- 1. Научная библиотека ГОУ ВПО ЛНР «ДонГТУ» http://library.dstu.education
- 2. Электронно-библиотечная система ФГБОУ ВО «БГТУ им. В.Г. Шухова» http://ntb.bstu.ru
 - 3. ЭБС Издательства "ЛАНЬ" http://e.lanbook.com/
 - 4. http://electricalschool.info/elprivod
- 5. Зеленов А.Б. Теория электропривода. Конспект лекций. (Электронная версия).
 - 6. http://www.twirpx.com/files/tek/emotor

8 Материально-техническое обеспечение дисциплины

Материально-техническая база обеспечивает проведение всех видов деятельности в процессе обучения, соответствует требованиям ФГОС ВО.

Материально-техническое обеспечение представлено в таблице 7.

Таблица 8.1 – Материально-техническое обеспечение

Наименование оборудованных учебных кабинетов	Адрес (местополо- жение) учебных кабинетов
Специальные помещения:	
Научно-исследовательская лаборатория «Теории электропри-	Ауд. 118, корп.
вода» (25 посадочных мест), оборудованная учебной мебелью и лабораторными стендами	главный
Компьютерный класс (25 посадочных мест), оборудованный	Ауд. 319, корп.
учебной мебелью, компьютерами с неограниченным доступом к	главный
сети Интернет	

Лист согласования РПД

Разработала		
доц. кафедры электромеханики		
им. А. Б. Зеленова	As	М.А. Ямковая
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
(должность)	(подпись)	(Ф.И.О.)
	. 1 =	1
Заведующий кафедрой	(подпись)	<u>Д. И. Морозов</u> (Ф.И.О.)
Протокол № 1 заседания кафедры		
электромеханики им. А.Б. Зеленова	от 22.08.	2024 г.
Декан факультета	(подпись)	<u>Дьячкова</u> (Ф.И.О.)
Согласовано		
Председатель методической комиссии по направлению подготовки 13.03.02 Электроэнергетика и электротехника	<u>Маео</u> / <u>Л</u>	. <u>Н. Комаревцева</u> (Ф.И.О.)
Начальник учебно-методического центра	(подпись)	О.А. Коваленко

Лист изменений и дополнений

Номер изменения, дата внесения изменения, номер страницы для внесения изменений				
ДО ВНЕСЕНИЯ ИЗМЕНЕНИЙ:	ПОСЛЕ ВНЕСЕНИЯ ИЗМЕНЕНИЙ:			
Основание:				
Подпись лица, ответственного за внесение изменений				